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Figure 9. Multi-camera system for capturing indoor sequences.
An event camera (DAVIS346, red circle) is synchronized with
7 RGB cameras (FLIR BFS-U3-51S5, yellow circles) to capture
multi-view RGB images and monocular event streams. An RGB-
D camera (Azure Kinect DK, white circle) is used as an auxiliary
camera in the calibration step for precise calibration.

Overview. In the supplemental materials, we first intro-
duce the details of indoor and outdoor real world datasets
and synthetic dataset in Sec. 7. Then we show supplemen-
tal experiment results in Sec. 8. Finally, we illustrate the
details of comparison methods in Sec. 9 and the implemen-
tation details in Sec. 10.

7. Datasets
To supplement the section of Datasets in the main paper,
we show details about the indoor and outdoor sequences
of EVREALHANDS and simulation process of the synthetic
data.

7.1. Indoor Sequences

Capture system. The indoor sequences of EVREAL-
HANDS is captured in a multi-camera system [4, 15]. As
shown in Fig. 9, in our multi-camera system, 7 RGB
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Figure 10. Examples of indoor sequences from EVREALHANDS.
RGB frames (left) and corresponding event streams (right) in nor-
mal, strong light, flash and fast motion scenes.

cameras (FLIR, 2660×2300 pixels) and an event camera
(DAVIS346, 346×260 pixels) capture data from different
views simultaneously. After synchronizing all the cameras
with an external 15 Hz Transistor-Transistor Logic (TTL)
signal, we calibrate all the cameras with a moving chess-
board [6] with RGB images from FLIR camera, APS frame
from DAVIS346, and depth images from the RGB-D cam-
era.

Data acquisition. We show examples from our dataset in
Fig. 10. In the sequence of normal scenes, we capture RGB
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Figure 11. Hybrid camera system with an event camera and an
RGB camera.

images without motion blur under everyday indoor lighting.
When subjects keep hands static, the foreground scarcity is-
sue of event-based Hand Mesh Reconstruction (HMR) ap-
pears. We capture 457 seconds of data under strong light by
keeping two glare flashlights on with 2000 lumen. We set
the exposure time of 6 annotation RGB cameras to 0.5 ms to
avoid overexposure and that of 1 reference RGB camera to
15 ms to make its RGB images overexposed. Therefore, we
obtain images with high-quality from annotation cameras
for multi-view annotation and overexposed images from the
reference camera as training and evaluation data. To simu-
late background overflow issue, we collect sequences under
flash light of 317 seconds by making flashlights strobe at
1 Hz. Besides, we also collect 69 seconds of fast motion
sequences. To simulate motion blur issues of RGB-based
HMR, the subjects shake hands rapidly and fingers appear
as ghost in the images.

Annotation. Following [12], we first annotate 21 2D key-
points on each RGB view with Mediapipe [17] and correct
the unqualified annotations manually. By triangulating 2D
keypoints from 7 RGB views, we obtain 3D joints. Then we
fit the MANO model to the 3D joints to get the hand shape
for each timestamp.

7.2. Outdoor Sequences.

Capture system. In order to collect data for qualitatively
evaluation of the generalization performance of existing
methods in outdoor scenarios, we build a hybrid camera
system to collect data for qualitatively measuring the gener-
alization performance of existing methods in outdoor sce-
narios. As shown in Fig. 11, the hybrid camera system
consists of an RGB camera (FLIR BFS-U3-51S5), an event
camera (DAVIS346 Mono or PROPHESEE GEN 4.0) and a
beam-splitter (Thorlabs CCM1-BS013).

Data acquisition. We collected 12 sequences of 240 sec-
onds from three subjects, of which 6 sequences are captured
using DAVIS346 and the rest using PROPHESEE. The out-
door sequences face challenging issues, such as varying nat-
ural light conditions, pedestrian interference, and motion
blur (including 6 sequences with fast motion).

Figure 12. Visualization of our synthetic dataset generated using
INTERHAND2.6M [12] and v2e event simulator [7]. Examples
of RGB frames (left) and corresponding event streams (right) are
displayed side by side.

7.3. Synthetic data

Although EventHands [14] proposes a synthetic dataset to
the community, there exists domain gap between the used
synthetic pose and real-world pose. Therefore, we use
the event simulator v2e [7] to synthesize event streams
from a large-scale RGB-based sequential hand dataset IN-
TERHAND2.6M [12]. INTERHAND2.6M captures 2.6 mil-
lion images from 80∼140 multi-view cameras with var-
ious hand poses. Considering that the image resolution
(512×334 pixels) in INTERHAND2.6M is different from
that of DAVIS346 camera, we first use affine transforma-
tion to warp the RGB images as the same scale of real-world
event streams (346×260 pixels) and feed them into the v2e
simulator [7] to get synthetic event streams. In our synthe-
sizing setup, the positive threshold is set as 0.143 and the
negative threshold is 0.225. RGB frames are interpolated
ten times to increase the time resolution of synthetic events.
In our experiment, we select the right hand sequences of 9
camera views from 4 subjects.

8. Supplemental experiment results

To further evaluate our proposed method, we will illustrate
evaluation metrics in Sec. 8.1, show additional qualitative
results in Sec. 8.2 and introduce more quantitative results in
Sec. 8.3.

8.1. Evaluation metrics

Accuracy. MPJPE/MPVPE is root-aligned mean per
joint/vertex position error in Euclidean distance (mm).
It measures the distance between predicted and ground
truth results. PA-MPJPE/PA-MPVPE measures the
MPJPE/MPVPE between ground truth coordinates and 3D
aligned predicted coordinates using Procrustes Analysis
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Figure 13. Additional qualitative analysis of HMR methods under challenging issues (green box titled with ‘RGB-based HMR’ and blue
box titled with ‘Event-based HMR’), outdoor scenes (camel box titled with ‘DAVIS346 Mono’ ), and PROPHESEE sequences (camel box
titled with ‘PROPHESEE GEN 4.0’). For each issue, columns from left to right are RGB images, events, results from Mesh Graphormer
(MG) [10], FastMETRO-RGB (FR) [2], EventHands (EH) [14], FastMETRO-Event (FE), EvRGBHand-vanilla (Vanilla), EvRGBHand
without EvRGBDegrader (w/o Deg) and EvRGBHand (Ours).
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Figure 14. 3D PCK curves of EvRGBHand and other baselines.

(PA) [3]. This metric ignores the scale and global rotation.
AUC is the area under the curve of PCK (percentage of cor-
rect keypoints) with thresholds ranging from 0∼100 mm for
3D annotated sequences. The lower the metrics above are,
the better, except for AUC.

Computational cost. FLOPs is the floating point opera-
tions per inference and Params is the count of parameters.

8.2. More qualitative results

As shown in Fig. 13, we show more qualitative results of
the comparison between EvRGBHand and other baselines.
These qualitative results demonstrate the complementary
effects and generalization ability of EvRGBHand for HMR
with events and images.

To fully leverage the high temporal resolution property
of event cameras, we achieve high frame rate inference via
an asynchronous fusion strategy. Specifically, the event
stream with high temporal resolution can be split into dis-
crete temporal bins. These bins, representing discrete event
intervals, are configured to surpass the frame rate of tradi-
tional RGB cameras in frequency. Subsequently, each of
these temporal bins undergoes fusion with the latest RGB
frame, facilitated by EvImHandNet. The temporal relation-
ship between the timestamp ti of an event bin and the times-
tamp tj of the corresponding RGB frame can be formulated
as follows:

j = argmin
k

|ti − tk| , ti − tk ≥ 0. (1)

8.3. 3D PCK curves and AUC.

We show 3D PCK curves of the baselines and EvRGB-
Hand under several scenes in Fig. 14. The results show that
EvRGBHand outperforms all the methods based on a sin-
gle sensor on AUC. By complementary usage of events and
images, EvRGBHand achieves a higher AUC (0.07 ∼ 0.14)
than event-based HMR on normal scenes and flash scenes,
and RGB-based HMR on strong light scenes.

9. Details of comparison methods

As shown in Fig. 15, we provide additional expla-
nations about the structures of FastMETRO-Event and
EvRGBHand-vanilla. FastMETRO-Event derives from
the RGB-based HMR approach, FastMETRO [2]. Fast-
METRO [2] is an encoder-decoder based transformer
framework by disentangling the image embedding and
mesh estimation, which can achieve fast convergence, low
computation cost, and comparable accuracy. The only dif-
ference between FastMETRO-Event and FastMETRO [2]
lies in the input: FastMETRO-Event utilizes an event rep-
resentation instead of an RGB image. Despite this simple
substitution, it has outperformed the current state-of-the-art
event-based method, EventHands [14].

EvRGBHand-vanilla is built upon the FastMETRO [2]
framework, integrating event features and image features
as tokens into a transformer encoder. This approach fol-
lows the fashion of contemporary multi-modal fusion meth-
ods [1, 8, 16].

10. Implementation details

For event representation, we set N = 7000 for evalua-
tion. While for training step, the number of events in each
stacked event frame is selected randomly from 5000 ∼ 9000
for data augmentation. We apply geometric augmentation
including scale, rotation and translation.

The details of EvRGBDegrader are as follow:
• Overexposure (OE): Color jitter augmentation is

adopted with a probability of 0.4 to change the image
brightness. And the brightness factor is randomly se-
lected from 0.8 to 4.

• Motion blur (MB): Motion blur augmentation is applied
with a 0.3 probability. To synthesize blurry images, we
first apply video interpolation via estimated optical flow
to increase 15 fps videos to 120 fps ones. Then a single
blurry hand image is generated by averaging 17 consecu-
tive frames, which are interpolated from 3 sharp sequen-
tial frames.
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Figure 15. Brief structures of FastMETRO-Event and
EvRGBHand-vanilla proposed in the main paper.

• Background overflow (BO): Salt-and-pepper noise is
applied to each pixel with a probability of 0.2.

Moreover, event camera will emit temporally noisy outputs
caused by the quantal nature of photons and events with leak
noise from junction leakage and parasitic photocurrent [7,
13]. These noises are noticeable in strong light and flash
scenes. For data augmentation on event streams, we add
Gaussian noise with a probability of 0.8 on event streams to
simulate temporal noise. The deviation of Gaussian noise is
randomly selected from 0.05 to 0.2.

In order to effectively extract hand features, we crop the
frames with bounding boxes. We first obtain 3D joints at the
target time by linear interpolation (specially for the stacked
event frame) and project the 3D joints onto the image plane
to get 2D keypoints, which can be exactly covered by an
rectangle. The bounding box is a square which shares the
same center with the rectangle and has 1.6 times the length
of the longer side of the rectangle. The sizes of bound-
ing boxes are 192×192 for both RGB frames and stacked
event frames. In our experiments, we use ResNet [5] as our
CNN backbones. The number of transformer blocks L is set
to 3 and the hidden state dimensions of L blocks are 256.
The number of transformer heads is set to 8. For the ver-
tex and joint loss functions, λV is 100 and λJ is 2000. The
initial learning rate is set to 0.0001 and we apply a cosine
annealing schedule [11]. We use Adam [9] as the optimizer
with β1 = 0.9, β2 = 0.999 and no weight decay. We train
EvRGBHand with a batch size of 32 for 50 K iteractions on
2 NVIDIA TITAN X GPUs.
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