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Note that images displayed in the main paper have been enlarged for improved visibility. In the supplementary mate-
rial, full-resolution images are presented. For video comparative results, please see https://docs.google.com/
document/d/1LVuaZY847m4z0QmAGIC69liZVgcUZkDbt_jXCj6Pz7Y/edit.

7. Details of Datasets
In this section, we present the datasets used in this paper. The dataset details are summarized in Table 3.

Table 3. List of the datasets for evaluation. “RS” and “GS” denote “Rolling Shutter” and “Global Shutter”, respectively; “CFA” stands for
“Color Filter Array”; “GT” means “Ground Truth”.

Scene CIS setting EVS CFA GT Description
Simulation data
basketball RS, 120FPS color 10 kFPS Text and high frequency texture (ball skin) appearing and disappearing on a spinning basketball
checkerboard RS, 120FPS color 10 kFPS A free falling and rotating checkerboard with strong color contrast
slingshot egg RS, 120FPS color 10 kFPS A ultra-fast pellet flying toward an egg, large VFE delay
running man RS, 120FPS color 10 kFPS A running man with slow speed, small VFE delay
fan RS, 120FPS color 10 kFPS A rotating fan with fast speed rigid motion and small color contrast
Measurement data - natural environments
mono drone RS, 121.8FPS monochrome N.A. A still drone with rotating blades
color drone RS, 121.8FPS color N.A. A still drone with rotating blades
table tennis RS, 121.8FPS monochrome N.A. Text appearing and disappearing on a spinning table tennis ball
badminton RS, 121.8FPS color N.A. An upward-bouncing shuttlecock after falling
Measurement data - controlled environments
rotating disk RS, 121.8FPS monochrome N.A. A rotating Siemens star under varying levels of illumination and speed
HS-ERGB dataset
spinning disk GS, 150FPS monochrome N.A. A plate undergoing out-of-plane rotation
spinning umbrella GS, 153FPS monochrome N.A. An umbrella with a regular pattern undergoing in-plane rotation

7.1. Simulation Data

The simulation data is generated by a CIS-EVS hybrid sensor simulator [4] which models EVS latency from both pixel
front-end and peripheral readout circuitry. The simulator has been calibrated to mimic real sensor characteristics. Figure 12A
illustrates the input and output of the simulator. The simulator processes a series of input images, which stem from high-speed
camera captures at a frame rate of 10 kFPS. These input frames are also used as the ground truth for algorithm evaluation.
The simulator outputs events at a resolution of 540× 960 as well as blurry 1080p CIS frames with RS effect. The simulator
ensures that CIS and EVS data are synchronized temporally, in correspondence to the operation of a hybrid CIS-EVS sensor.
The CIS RS row exposure time is set to 1ms. The EVS contrast threshold and refractory time are configured to 20% and
20 µs, respectively.

https://docs.google.com/document/d/1LVuaZY847m4z0QmAGIC69liZVgcUZkDbt_jXCj6Pz7Y/edit
https://docs.google.com/document/d/1LVuaZY847m4z0QmAGIC69liZVgcUZkDbt_jXCj6Pz7Y/edit


7.2. Measurement Data

We use a hybrid CIS-EVS sensor [3] for data collection. Since we lack ground truth for measured video capture, only
qualitative evaluation results are presented. Scenes from natural environments cover both indoor and outdoor sequences, as
depicted in Figure 13A. The positive and negative triggering thresholds are configured to 23% and 16%, respectively.

In order to achieve a controlled environment, we establish an experimental setup with two adjustable LED light sources
and a Siemens star pattern positioned on the motorized plate. We proposed five different ambient lighting conditions (50 lx,
100 lx, 300 lx, 500 lx, and 1000 lx) and five rotational speeds (76 rpm, 129 rpm, 182 rpm, 237 rpm, and 292 rpm) in our
experimental setup. The positive and negative thresholds are set to 20%.

7.3. HS-ERGB Dataset

The HS-ERGB dataset is captured by a dual camera setup [5]. As the CIS and EVS pixel coordinates are not well-aligned
due to the configuration of stereo cameras, some of the pixels on the CIS sensor plane lack corresponding EVS data. The
pixel-wise reconstruction methods suffer from this issue and generate frames with “holes”. To address this issue, we employ
a post-processing methodology to yield “hole-free” event data. This method accumulates events in a single frame, followed
by a morphological closing operation. The difference between the original accumulated frame and the closed-operated frame
serves as the mask for identifying hole pixels. Subsequently, a median filter with a 3×3 kernel is applied to the masked region
to fill holes. Note that for machine learning-based methods (Time Lens, FILM, CBMNet, EvUnroll, and REFID), the post-
processing method is not applied since the neighborhood relationship is intrinsically considered during the reconstruction of
each pixel.

8. Parameter Settings
We use the following settings for sensor-related parameters: τ0up = 3.1×10−5, τ0down = 3.2×10−5, αup = 3.0×10−16

and αdown = 6.5×10−16 (for positive and negative events) stem from design. The contrast threshold ranges from 16% to
23 percent, and trp=20 µs comes from hardware settings.

9. Additional Results
The optimization problem is non-linear, non-convex and there is no general theoretical guarantee of convergence. We

empirically verified that we converge to reasonable accuracy as can be seen in our benchmark. The numerical optimization is
performed using Trust Region Reflective algorithm [2]. We define lower and upper variable boundaries helping stability and
use the refinement network to smooth unstable pixels.

Figure 12B illustrates the reconstructed image quality of the simulation dataset. The “basketball” and “slingshot egg”
scenes are analyzed in the main paper. Regarding the checkerboard scene, our results exhibit the cleanest, sharpest, and
straightest edges, while other methods suffer from varying degrees of ghosting and RS effects. Although EvUnroll demon-
strates commendable effectiveness in rectifying rolling shutter distortions within the pattern, residual ghosting artifacts per-
sist notably at the lower section of the checkerboard, which are also evident on the hand in the “basketball” dataset. In
the “running man” dataset, our result demonstrates significantly fewer ghosting artifacts compared to EDI and AKF. In this
slow-motion scenario, the VFE delay is small, allowing the learning-based method to maximize its advantages. Our method
achieves comparable results to the learning-based method.

Figure 13B illustrates the reconstructed image quality of natural scenes within the measured dataset. The proposed method
successfully removes ghosting being more impactful to the overall visual experience. In the “mono drone” and “color
drone” scenes, our advantage is limited due to slow object motion. The proposed method exhibits fewer ghosting artifacts
on the rotating blade compared to EDI and AKF. Moreover, it achieves a notably sharper reconstruction of the upper-left
blade pattern in the “mono drone” scene compared to CBMNet’s result. In the “table tennis” scene, our method and FILM
demonstrate superior performance, while EDI and AKF suffer from pronounced ghosting. Additionally, Time Lens and
CBMNet show some distortions in the alphabet characters. Regarding the “badminton” scene, our results present a higher
fidelity in reconstructing the shuttlecock compared to FILM, and the racket compared to CBMNet, EvUnroll, and REFID.

Figure 14 presents reconstructed frames for controlled scenes of the measured dataset. In the “1000 lx, 237 rpm” scene, the
results obtained from learning-based methods show either quantization errors or RS effects. In the “1000 lx, 292 rpm” scene,
the reconstructed edges of spokes from learning-based methods begin to generate distortions, and the quality deteriorates as
the radial distance increases. Conversely, our method maintains stable performance in these aspects.

Figure 15 displays comparative results for selected scenes in the HS-ERGB dataset. As explained in the main paper, our
method does not yield optimal image quality, since it can be influenced by sensor characteristics, data quality (such as the



alignment of CIS and EVS), and object motion. Despite differing sensor characteristics from our model, these results show
the excellent generalization capability of our method. Through the comprehensive comparative analysis, it is evident that
these SOTA methodologies exhibit imperfections in at least one of the following categories: color noise, blur, or ghosting. In
this study, we propose a novel approach that offers a favorable balance between these competing factors.
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Figure 12. A: Visualization of simulation data. “CIS frame 0” and “CIS frame 1” are two consecutive simulated CIS frames that are
generated from the simulator; “Event” shows the spatial distribution of generated events whose timestamps are between these two CIS
frames (blue: positive events, red: negative events, color saturation: event count number); “Ground truth” shows high frame rate images
that are used as the input of the simulator and the evaluation metric calculation. Both CIS frames and events are fed into our joint deblurring,
rolling-shutter correction and video frame interpolation method. B: Qualitative results comparing the proposed method with EDI, AKF,
Time Lens, FILM, CBMNet, EvUnroll, and REFID on the simulation dataset.
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Figure 13. A: Visualization of measured data in the natural environment. “CIS frame 0” and “CIS frame 1” are two consecutive CIS frames
that are captured by the hybrid sensor; “Event” shows the spatial distribution of collected events whose timestamps are between these two
CIS frames (blue: positive events, red: negative events, color saturation: event count number). Both CIS frames and events are fed into our
proposed method. GT is not available in the measurement dataset. B: Qualitative results comparing the proposed method with EDI, AKF,
Time Lens, FILM, CBMNet, EvUnroll, and REFID on natural scenes from the measured datasets.
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Figure 14. A: Visualization of measured data in the natural environment. “CIS frame 0” and “CIS frame 1” are two consecutive CIS frames
that are captured by the hybrid sensor; “Event” shows the spatial distribution of collected events whose timestamps are between these two
CIS frames (blue: positive events, red: negative events, color saturation: event count number). Both CIS frames and events are fed into our
proposed method. GT is not available in the measurement dataset. B: Qualitative results comparing the proposed method with EDI, AKF,
Time Lens, FILM, CBMNet, EvUnroll, and REFID on controlled scenes from the measured datasets.
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Figure 15. A: Visualization of measured data in the natural environment. “CIS frame 0” and “CIS frame 1” are two consecutive CIS frames
that are captured by the hybrid sensor; “Event” shows the spatial distribution of collected events whose timestamps are between these two
CIS frames (blue: positive events, red: negative events, color saturation: event count number). Both CIS frames and Events are fed into
our proposed method. B: Qualitative results comparing the proposed method with EDI, AKF, Time Lens, FILM, CBMNet, EvUnroll, and
REFID on selected scenes from the HS-ERGB dataset.

10. Additional Ablation Results
Figure 16 demonstrates the ablation results for the “slingshot egg” scene. In this particular scene, the pellet’s shape

distinctly emerges upon implementing VFE delay compensation. On the other hand, RL and RP compensation yield slight
improvements on the pellet’s appearance. This observation suggests that VFE plays a more significant role in this instance.
Conversely, in the “basketball” scene displayed in the main paper, each module addresses specific aspects of ghosting. The
ablation study shows that the efficacy of compensation is scene-dependent, and the proposed compensation methods are
indispensable in improving reconstructed image quality.

Figure 17 and Table 4 present an ablation study against NAFNet [1] for deblurring on CIS images. Numerically, the
proposed method achieves higher scores on most of the datasets. Visually it is apparent that for the basketball scene our
method can reconstruct a more detailed texture on the basketball surface. NAFNet leads to patch artifacts near the image
center. The artifacts are also noticeable in the checkerboard scene on black areas in both background and foreground. The
study confirms that our method, with the assistance of EVS, exhibits excellent stability in deblurring task compared to
NAFNet.



(a) with no compensation (b) with VFE delay compensation (c) with RL+RP compensation (d) withVFE+RL+RP compensation

Figure 16. Qualitative results of ablation study on the “slingshot egg” scene. “RL” and “RP” denote “Readout Latency” and “Refractory
Period”, respectively. Refer to Figure 1(a) for “with VFE+RL+RP compensation and refinement” result.
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Figure 17. Qualitative comparative results of deblurring with NAFNet.

Table 4. Quantitative comparison of deblurring using original NAFNet [1] on the proposed simulation dataset for ablation study. Each row
shows results for a particular scene. The first place is highlighted with bold underline.

Ours NAFNet
Scene PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
basketball 27.41 0.152 25.09 0.258
checkerboard 29.26 0.183 22.27 0.265
slingshot egg 30.01 0.221 29.61 0.351
running man 25.98 0.214 25.51 0.154
fan 24.06 0.171 19.92 0.153
Average 27.34 0.188 24.48 0.236
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