
Efficient Hyperparameter Optimization with Adaptive Fidelity Identification

Supplementary Material

7. Notation
In Table 3, we provide a comprehensive summary of the
notations utilized throughout the paper, along with their de-
tailed definitions and explanations.

8. Proof of FastBO
HPO methods generally do not provide theoretical guaran-
tees or rely on strong assumptions. In § 4.1, we provide
formal definitions for the efficient point and propose to use
the efficient point ei of �i as its fidelity to fit the surrogate
model. While it is challenging to prove FastBO’s efficiency
in reaching the optimal configuration, we provide a proof
showing the superiority of FastBO over SHA-based meth-
ods (e.g., Hyperband, ASHA, PASHA, BOHB, A-BOHB,
A-CQR, Hyper-Tune). We show that fidelities in FastBO
more reliably indicate final fidelity performance than those
in SHA-based methods.

Proof. Given two learning curves C1(r), C2(r). C2(r) de-
scends more rapidly initially, while C1(r) descends more
slowly initially but finally converges to a lower loss, as
shown in Figure 4. Let c be the crossing point.

SHA-based methods: they use a set of fixed fidelities
{r} for both C1(r) and C2(r). If r  c, then C1(r) � C2(r),
failing to indicate final performance.

FastBO: FastBO uses fidelities e1 and e2 for C1(r),
C2(r). Clearly, e1 > e2, leading to C2(e1) < C2(e2). In
what follows, we discuss two cases.

Case 1: e1 � c (including c  e2 < e1 and e2 <

c  e1): It follows that C1(e1)  C2(e1). Thus, we have
C1(e1)  C2(e1) < C2(e2). Then, C1(e1) < C2(e2) holds
true, aligning with the final performance.

Case 2: e2 < e1 < c: Based on Definition 1, C1(e1) �
C1(2e1) ⇡ �1, C2(e2) � C2(2e2) ⇡ �1. Subtracting yields
C1(e1) � C2(e2) = C1(2e1) � C2(2e2) + �

0
1, where �

0
1 is

a small threshold around �1. As 2e1 � c exists, it implies
C1(2e1) < C2(2e2) based on Case 1, so C1(e1) < C2(e2).

Therefore, FastBO offers better fidelities that can more
reliably indicate final fidelity performance, including sce-
narios even when e1, e2 < c.

9. Illustration on Efficient Point and Satura-
tion Point

In § 4.1, we provide formal definitions for the efficient point
and saturation point. Here, we provide a more intuitive un-
derstanding of the concepts.

Pe
rf

or
m

an
ce

Fidelity

C1(r)

Efficient point & performance

e1e2 s2 s1

Crossing point

C2(r)

Saturation point & performance

rmaxrmin

Figure 4. Illustration of efficient point and saturation point associ-
ated with learning curves.

Figure 4 shows an intuitive visualization of two learn-
ing curves C1(r), C2(r), together with their respective ef-
ficient points e1, e2 and saturation points s1, s2. We can
easily grasp that the saturation points signify that the per-
formance has nearly reached full convergence, while the ef-
ficient points, located at a relatively earlier stage, represent
a position where performance can be achieved with high ef-
ficiency. From Figure 4, we can see a significant difference
in the shapes of the two learning curves. C2(r) experiences
rapid initial descent and quick convergence; while C1(r) ex-
periences a slower initial descent, but eventually converges
to a better performance than C2(r). Due to this difference,
we can find a crossing point where the two curves meet.

Suppose that C1(r) and C2(r) correspond to configura-
tions �1 and �2 respectively, we can know �1 outranks
�2 in terms of configuration performance ranking. Since
FastBO utilizes efficient points as the fidelities for fitting the
surrogate model, it is able to capture the distinctive trends in
the learning curves. This ensures that the observed perfor-
mance y

e1
1 surpasses y

e2
2 , i.e., consistent with the configu-

ration performance ranking. In contrast, existing successive
halving-based methods may fail to maintain ranking con-
sistency. Specifically, they are susceptible to erroneous ter-
mination of �1 if the decision is made before the crossing
point. Even with the aid of surrogate models, fitting before
the crossing point leads to an inaccurate surrogate model.

Furthermore, we can observe that there is often a gap
between the saturation point si and the final fidelity rmax,
which becomes more pronounced on curves that converge
rapidly, such as C2. FastBO utilizes the saturation point s1
and s2 as the approximation for the final fidelity rmax. In-
tuitively, �1 and �2 can achieve performances ys11 and y

s2
2

that are very close to their performances at the final fidelity
while saving a considerable amount of computational cost.

Table 3. The notations used throughout the paper and the corresponding definitions.

Notation Definition

a Acquisition function.
cj(r|✓j), C(r|�) One of, and the combined parametric learning curve model.
Ci(r) Empirical learning curve for �i.
Di Observation set that used to fit the surrogate model, containing i pairs of data points.
ei The efficient point of �i.
f(�), f(�, r) Performance with configuration � in the single-fidelity and multi-fidelity settings.
k The number of configurations to be promoted.
M Surrogate model.
O

w
i Early observation set of �i across different fidelities, with a maximum level w considered.

r, rmax, rmin Fidelity; the maximum and minimum fidelity.
si The saturation point of �i.
w Warm-up point for all the configurations.
yi, yri Evaluation results of f(�i) and f(�i, r) in the single-fidelity and multi-fidelity settings.
ymax, ymin Best and worse possible evaluation performance.
↵ Performance decrease ratio.
�1, �2 Small thresholds used in identifying efficient points and saturation points.
✓j , � Parameters in one of, and the combined parametric learning curve model.
�i, � A hyperparameter and a hyperparameter configuration.
⇤i, ⇤ Domain of �i and search space of �.
!j The weight of a parametric learning curve model.

10. Discussion on Choice of Parametric Learn-
ing Curve Models

In § 4.2, we construct the parametric learning curve model
by combining three parametric models POW3, EXP3 and
LOG2. Here, we provide detailed discussions on the choice.

Overall, POW3, EXP3 and LOG2, especially POW3,
have shown good fitting and predicting performance in pre-
vious empirical studies [26, 43]. In order to capture the di-
versity in learning curve shapes, we explore different fam-
ilies of parametric models, including the power law, ex-
ponential, and logarithmic families. However, parametric
models from the sigmoidal family, like MMF and Weibull,
are not being considered, since they tend to fit well if
enough observations are used for fitting; but in situations
like ours where observations are limited, their performance
is suboptimal [27]. Moreover, existing studies have dis-
cussed the underfitting of the power law and exponential
models with two parameters and the overfitting of those
with four or more parameters [20]. Therefore, we opt for
the POW3 and EXP3 (i.e., power law and exponential mod-
els with 3 parameters respectively).

Considering the goal of high efficiency in HPO, we sim-
plify the choice of the parametric learning curve model to
strike a balance between capturing general learning curve
shapes and prioritizing computational efficiency. We avoid
considering complex models, since the computational com-
plexity of the subsequent parameter estimation is propor-

NB301-CIFAR10

(a) Search spaces (b) AFs
Figure 5. Performance of average validation accuracy on CIFAR-
10 of the NAS-Bench-301 benchmark.

tional to the number of parameters. The increase in the
number of parameters translates to an increase in the time
required for each hyperparameter configuration during the
optimization process, which runs counter to the fundamen-
tal objective of designing efficient HPO algorithms.

11. Extended Experiments
In this section, we provide additional experimental results
and discussions.

11.1. Extended Experiments on NAS-Bench-301
Besides the comparison on the LCBench, NAS-Bench-201
and FCNet benchmark in § 5.1, we compare the anytime
performance for the HPO methods on the NAS-Bench-301

(a) Airlines (b) Albert (c) Christine (d) Covertype (e) Fashion-MNIST

(f) CIFAR-10 (g) CIFAR-100 (h) ImageNet16-120 (i) Protein (j) Slice

Figure 6. Performance of (a)-(e): average validation accuracy against the number of evaluated configurations on the LCBench benchmark.
(f)-(h): average validation error against the number of evaluated configurations on the NAS-Bench-201 benchmark and (i)-(j): average
validation loss against the number of evaluated configurations on the FCNet benchmark.

benchmark [36] that has up to 1021 architectures on the
DARTS/FBNet search space. The results on the CIFAR-
10 dataset are shown in Figure 5. We can observe that
FastBO still shows strong anytime performance on NAS-
Bench-301, demonstrating the scalability of FastBO on
large search spaces.

11.2. Extended Experiments of Sample Efficiency

In § 5.1, we show the anytime performance of a wide range
of HPO methods. One reason for FastBO’s good anytime
performance is its good sample efficiency. Sample effi-
ciency refers to the ability of an algorithm to find the op-
timal solution with the minimum number of samples. In
the context of HPO, sample efficiency quantifies how effec-
tively the algorithm explores the hyperparameter space and
identifies promising configurations while minimizing the
number of evaluated configurations. Methods with higher
sample efficiency, such as BO, are capable of identifying
satisfactory configurations with fewer evaluations.

To investigate the sample efficiency of FastBO, we con-
duct experiments using the same settings as the experiments
in § 5.1 but plotting the achieved performance as a func-
tion of the number of evaluated configurations. Figure 6
shows the results obtained on the three benchmarks. We
can observe that FastBO is able to achieve comparable, and
in some cases, even superior performance to vanilla BO.
It is particularly noteworthy considering that FastBO only
performs partial evaluations of the configurations and is un-
sure about their performance at the final fidelity. The results
demonstrate that FastBO has the ability to identify the ap-

propriate fidelity for each configuration that can reliably in-
dicate its performance. This ability is achieved by our adap-
tive strategy that adaptively finds the efficient point for each
configuration as its fidelity ri for surrogate model fitting.

In order to facilitate a clearer comparison, we also incor-
porate the results on an additional baseline: a partial eval-
uation scheme that replaces the adaptive strategy with the
adoption of a fixed value as the fidelity for all the configu-
rations to fit the surrogate model. We set the fixed fidelity
to 20% of the total resource budget and present the results
in Figure 6. We can see that this partial evaluation base-
line consistently lags behind both FastBO and vanilla BO.
It underscores the challenge of using a fixed fidelity value
for all configurations in reflecting their final fidelity perfor-
mance, which highlights the importance of the adoption of
our adaptive strategy.

11.3. Extended Experiments of Anytime Perfor-
mance

In § 5.1, we compare the anytime performance for the HPO
methods. Here, we present the critical difference diagrams
to summarize the ranks of all methods and provide informa-
tion on the statistical difference.

Due to the potential inconsistencies in performance met-
ric differences among different datasets within the same
benchmark, which may affect the critical difference dia-
gram, we first employ normalized regret to standardize each
evaluation result y across datasets. The normalized regret
for each y is defined as (y � ymin)/(ymax � ymin), where
ymax and ymin represents the best and worse possible eval-

Table 4. Configuration Evaluation Unit (CEU) of each dataset.

Benchmark Dataset CEU(second)

LCBench

Airlines 1187
Albert 1297
Christine 1715
Covertype 1942
Fashion-MNIST 831

NAS-Bench-201
CIFAR-10 3879
CIFAR-100 3879
ImageNet16-120 11150

FCNet Protein 303
Slice 547

uation performance can be found. Moreover, since different
datasets require varying time to evaluate a single configura-
tion, it is not fair or meaningful to use the evaluation results
at a fixed time for all the datasets for comparison. Consider-
ing the varying dataset workloads, we introduce one Config-
uration Evaluation Unit (CEU) as the average time required
to perform a complete evaluation of a single configuration
on a given dataset. The CEU of each dataset shown in Ta-
ble 4 is easy to obtain for the tabular benchmark.

With these ingredients, we provide the critical differ-
ence diagrams of LCBench, NAS-Bench-201 and FCNet
in Figure 7. The critical difference diagrams are based on
Wilcoxon-Holm post-hoc analysis. The results correspond
to the results at one CEU3, which represents relatively early
evaluated performances. We can observe that FastBO con-
sistently outperforms the baseline methods on all the bench-
marks at one CEU, showing its capacity for an early advan-
tage gain during the optimization process.

From Figure 7, we observe that the model-based multi-
fidelity HPO methods, including FastBO, A-BOHB, A-
CQR, BOHB, DyHPO and Hyper-Tune, outperform the
other methods in most cases, highlighting the promising di-
rection of integrating model-based approaches with multi-
fidelity techniques. Among them, DyHPO also considers
the learning curves of hyperparameter configurations. Both
FastBO and DyHPO are able to gain an advantage at a rel-
atively early stage, indicating the significant value of learn-
ing curve information in addressing HPO problems. How-
ever, we observe that DyHPO exhibits inferior performance
on the FCNet benchmark, suggesting a potential limitation
in dealing with the validation loss metric.

Figure 7. Critical difference diagram for LCBench, NAS-Bench-
201 and FCNet at one CEU. The ranks indicate the sorted position
in terms of normalized regret (the lower the better). Connected
ranks indicate that differences are not statistically significant.

11.4. Extended Experiments of Efficiency on Con-
figuration Identification

In § 5.2, we compare the time spent for the HPO methods on
identifying a good configuration. Here, we report additional
results on the datasets from the LCBench, NAS-Bench-201
and FCNet benchmarks in Table 5. We conduct experiments
following the same settings as the experiments in § 5.2.

The experimental results shown in Table 5 are consistent
with those shown in § 5.2. FastBO saves considerable wall-
clock time over the baseline methods when achieving sim-
ilar or better performance values, demonstrating the high
efficiency of FastBO in identifying a good configuration.
The model-free PASHA method often gets a high variance
in wall-clock time because different random seeds can have
a larger impact on it. Results of other model-free methods
are not included in Table 5, since PASHA demonstrates its
superiority over them [4].

11.5. Extended Experiments of Effectiveness of
Adaptive Fidelity Identification

In § 5.3, we examine the effectiveness of the proposed adap-
tive fidelity identification strategy. Here, we provide addi-
tional results on more datasets.

We show the results on LCBench, NAS-Bench-201 and

3Note that the CEU is measured under one sequential worker, while
FastBO and the baselines are evaluated under 4 parallel workers.

Table 5. Comparison of relative efficiency for configuration identification. Wall-clock time (abbr. WC time) reports the elapsed time spent
for each method on finding configurations with similar performance metrics, i.e., validation error (⇥10�2) and validation loss (⇥10�2).
Regarding relative efficiency, FastBO is set as the baseline with a relative efficiency of 1.00.

Dataset

Metric Method
FastBO BO PASHA A-BOHB A-CQR BOHB DyHPO Hyper-Tune

Airlines
Val. error 36.2±0.1 36.3±0.5 36.2±0.1 36.3±0.3 38.9±0.5 38.5±0.1 36.3±0.1 36.2±0.1
WC time (h) 0.5±0.3 2.4±1.3 1.1±0.7 1.1±0.6 2.7±0.6 2.2±0.4 1.3±0.3 1.1±0.6
Rel. efficiency 1.00 0.23 0.51 0.50 0.20 0.25 0.38 0.48

Albert
Val. error 33.9±0.1 34.0±0.1 34.3±0.1 34.0±0.0 34.8±0.7 34.7±0.2 33.9±0.2 34.0±0.3
WC time (h) 0.5±0.3 1.0±0.7 1.2±0.8 1.6±1.0 3.2±0.4 1.9±1.4 1.0±0.4 1.2±1.1
Rel. efficiency 1.00 0.48 0.39 0.28 0.14 0.24 0.49 0.39

Christine
Val. error 25.3±0.1 25.5±0.1 25.6±0.1 25.5±0.1 26.7±0.0 26.8±0.2 25.5±0.1 25.4±0.0
WC time (h) 0.8±0.3 2.4±1.3 2.4±2.2 2.1±1.2 1.6±2.1 1.5±0.9 1.6±0.6 2.9±0.8
Rel. efficiency 1.00 0.33 0.33 0.37 0.48 0.54 0.47 0.27

Fashion-
MNIST

Val. error 10.7±0.1 10.7±0.1 10.7±0.1 10.7±0.1 11.6±0.3 11.4±0.2 10.7±0.1 10.7±0.1
WC time (h) 0.2±0.1 0.8±0.7 1.8±1.4 0.5±0.2 2.5±1.1 3.2±0.8 0.6±0.2 0.6±0.4
Rel. efficiency 1.00 0.21 0.10 0.34 0.07 0.19 0.28 0.27

CIFAR-10
Val. error 6.2±0.4 6.5±0.4 6.4±0.7 6.2±0.2 6.3±0.4 6.3±0.2 6.3±0.4 6.2±0.2
WC time (h) 0.6±0.4 3.9±2.0 1.3±0.6 2.3±1.1 2.6±0.9 2.1±0.5 2.5±0.8 1.6±0.8
Rel. efficiency 1.00 0.16 0.49 0.27 0.25 0.31 0.26 0.39

CIFAR-100
Val. error 28.7±1.3 29.6±1.4 32.8±8.9 28.7±1.2 28.8±1.5 28.8±0.7 28.8±1.1 29.4±1.1
WC time (h) 1.2±0.9 2.4±1.6 1.6±1.4 2.8±1.2 2.8±1.3 1.7±0.4 2.3±1.0 1.7±0.5
Rel. efficiency 1.00 0.50 0.73 0.43 0.42 0.72 0.52 0.72

Protein
Val. loss 22.6±0.4 22.9±0.7 23.6±0.9 22.6±0.3 22.7±0.5 23.2±0.4 22.8±0.7 22.7±0.7
WC time (h) 0.3±0.1 1.2±0.7 0.7±0.6 0.8±0.5 0.6±0.3 1.3±0.7 1.2±0.4 1.1±0.5
Rel. efficiency 1.00 0.23 0.38 0.32 0.42 0.21 0.23 0.25

FCNet in Figure 8. FastBO with the adaptive fidelity identi-
fication strategy sets the efficient point ei for each configu-
ration �i as its fidelity ri to fit the surrogate model. In con-
trast, the vanilla BO is a full evaluation scheme that uses
100% of the total resource budget as ri. The other three
baselines are also partial evaluation schemes like FastBO
but they replace the adaptive choice of ri = ei with a fixed
fidelity, including 25%, 50%, and 75% of the total resource
budget, for all the configurations to fit the surrogate model.

The results shown in Figures 8 are consistent with those
shown in § 5.3. We have two main observations. Firstly,
FastBO outperforms the other partial evaluation schemes
that remove the adaptive fidelity identification strategy,
showing the effectiveness of the proposed adaptive strat-
egy. Secondly, although the partial evaluation schemes with
fixed ri are able to converge faster than the full evalua-
tion counterpart (i.e., the vanilla BO) in the initial stage,
this early advantage diminishes progressively over time. Fi-
nally, these partial evaluation baselines show significant dif-

ferences in their final performance on 4 out of 7 datasets
when compared to vanilla BO. The main reason is that these
partial evaluation schemes naively use a fixed ri for all the
configurations and thus fail to create an accurate surrogate
model to identify more promising configurations. This ob-
servation also highlights the importance of the adoption of
our adaptive fidelity identification strategy.

11.6. Extended Experiments of Generality of The
Proposed Extension Method

In § 5.4, we investigate the ability of our proposed exten-
sion method. Here, we provide additional results in Fig-
ure 9. We run three well-known single-fidelity methods
CQR [34], BORE [42], and REA [32], and extend them
to the multi-fidelity setting using our extension method, de-
noted as FastCQR, FastBORE, and FastREA respectively.
More specifically, all the multi-fidelity variants evaluate the
configurations to their efficient points and use the corre-
sponding performances for the subsequent operations, i.e.,

(a) Airlines (b) Albert (c) Christine (d) Fashion-MNIST

(e) CIFAR-10 (f) CIFAR-100 (g) Protein

Figure 8. Average validation accuracy on the LCBench benchmark ((a)-(d)), average validation error on the NAS-Bench-201 benchmark
((e)-(f)), and average validation loss on the FCNet benchmark (g) of (i) FastBO that set ri = ei, (ii) the schemes that use fixed 25%, 50%,
75% of the total resource budget as ri for all configurations, and (iii) vanilla BO that uses 100% total resource budget as ri.

(a) Airlines (b) Albert (c) Christine (d) Fashion-MNIST

(e) CIFAR-10 (f) CIFAR-100 (g) Protein

Figure 9. Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants FastCQR, FastBORE, FastREA using
our extension method: average validation accuracy on the LCBench benchmark ((a)-(d)), average validation error on the NAS-Bench-201
benchmark ((e)-(f)), and average validation loss on the FCNet benchmark ((g)).

fitting the surrogate model for FastCQR and FastBORE, se-
lection and variation for FastREA.

From Figures 9, we can clearly observe that the multi-
fidelity variants with our extension method always outper-
form their single-fidelity counterparts. For the relatively

simple task presented by the “Christine” dataset, the distinc-
tions are not as pronounced as they are in the case of other
datasets. However, it is still evident that the multi-fidelity
methods are able to converge towards a higher accuracy
more rapidly. Moreover, the evolutionary algorithm REA

(a) Airlines (b) Albert (c) Christine (d) Covertype (e) Fashion-MNIST

(f) CIFAR-10 (g) CIFAR-100 (h) ImageNet16-120 (i) Protein (j) Slice

Figure 10. Performance of vanilla BO and the schemes with different w. The default setting of w in FastBO is 20% of the total resource
budget (abbr. w = 0.2).

can also be enhanced by our extension method. The re-
sults are consistent with the observations shown in § 5.4 and
highlight the wide applicability of the proposed adaptive
strategy to extend any single-fidelity method to the multi-
fidelity setting.

12. FastBO Hyperparameter Setting, Experi-
ments, and Discussions

Here, we present the hyperparameter settings in FastBO,
and provide experimental results and discussions on the hy-
perparameter settings.

12.1. Hyperparameter Setting
FastBO uses a Matérn 5

2 kernel with automatic relevance
determination parameters and the expected improvement
acquisition function. We allocate 20% total resource bud-
get for the warm-up stage, i.e., w = rmin + 0.2 ·

(rmax � rmin). Ratio ↵ is set to 0.1; thresholds �1 and
�2 are set to 0.001 and 0.0005 4. We set k based on
the number of parallel workers #workers and the num-
ber of started configurations #configurations: k =
max{d#configurations/10e,#workers}.

12.2. Experiments of Hyperparameter Setting
We compare the anytime performance of FastBO with dif-
ferent values of w, the warm-up point for all the configura-
tions. We set w to 10%, 20%, 30%, 40%, and 50% of the to-
tal resource budget and examine their performances, where

4Parameters �1 and �2 given here are derived after standardizing met-
rics to a uniform scale from 0 to 1.

20% one is the default setting of FastBO. In addition, we
include a comparison with vanilla BO. In this section, we
simply use w = 0.1, ..., 0.5 for abbreviation.

The results are shown in Figure 10. Overall, the default
setting works quite well across different datasets. The re-
sults show that FastBO is not highly sensitive to the values
of w, particularly within a reasonable range of 0.1 to 0.4,
showing the robustness of our method.

Specifically, setting w to 0.2 and 0.3 always performs
better on all the datasets. For w = 0.5, we can often ob-
serve a delayed performance improvement, as it requires
more time to obtain additional evaluation observations for
each configuration. Although this setting has the possibility
of modeling more accurate learning curves, it wastes much
time on expensive evaluations. The suitable values for w

vary slightly across different benchmarks. For LCBench,
the datasets have a relatively small maximum fidelity level
of 50. Setting w = 0.1 cannot perform well, since there
are only 5 observations for each configuration that can be
used to fit its learning curve. While for NAS-Bench-201
and FCNet that have larger maximum fidelity levels, we can
often see a delayed performance improvement when setting
w = 0.4.

12.3. Discussion on Hyperparameter Setting

In order to avoid introducing extra efforts on tuning hyper-
parameters in FastBO, we intentionally set the hyperparam-
eters in a simple way. We encourage the practitioners to
directly use our default setting. Fine-tuning them is also a
possibility and, if explored, may lead to further optimiza-
tion on performance.

Table 6. Detailed information of LCBench, NAS-Bench-201 and FCNet benchmarks.

Benchmark #Evaluations #Hyperparameters #Fidelities

LCBench 2,000 7 50
NAS-Bench-201 15,625 6 200
FCNet 62,208 9 100

Table 7. Hyperparameters and configuration spaces for benchmarks.

Benchmark Hyperparameter Configuration space

LCBench

num layers [1, 5]
max units [64, 512]
batch size [16, 512]
learning rate [1e-4, 1e-1]
weight decay [1e-5, 0.1]
momentum [0.1, 0.99]
max dropout [0.0, 1.0]

NAS-Bench-201

x0 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none]
x1 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none]
x2 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none]
x4 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none]
x3 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none]
x5 [avg pool 3x3, nor conv 3x3, skip connect, nor conv 1x1, none]

FCNet

activation 1 [tanh, relu]
activation 2 [tanh, relu]
batch size [8, 16, 32, 64]
dropout 1 [0.0, 0.3, 0.6]
dropout 2 [0.0, 0.3, 0.6]
init lr [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1]
lr schedule [cosine, const]
n units 1 [16, 32, 64, 128, 256, 512]
n units 2 [16, 32, 64, 128, 256, 512]

13. Experimental Setup
Here we provide more details on the experimental setup,
including details of the used benchmarks and choice of pa-
rameters on the baseline methods.

13.1. Benchmark Details

In our experiments, we use 3 well-known tabular bench-
marks: LCBench [48], NAS-Bench-201 [8], and FC-
Net [18]. We conclude detailed information on these bench-
marks in Tables 6, including the number of provided evalu-
ations, the number of hyperparameters, and the number of
fidelities. Table 7 provides information on the hyperparam-
eters in the benchmarks and their corresponding configura-
tion spaces.
LCBench. LCBench is a neural network benchmark that
consists of 2000 hyperparameter configurations. LCBench
features a search space of 7 numerical hyperparameters of

neural networks, including the number of layers, the max-
imum number of units per layer, batch size, learning rate,
weight decay, momentum, and dropout. The fidelity refers
to the number of epochs in LCBench and each hyperparam-
eter configuration is trained for 50 epochs. LCBench con-
tains 35 datasets and we run the 5 most expensive ones.
NAS-Bench-201. NAS-Bench-201 is a benchmark that
consists of 15625 hyperparameter configurations. NAS-
Bench-201 features a search space of 6 categorical hyper-
parameters that correspond to 6 operations within the macro
architecture cell. The fidelity refers to the number of epochs
in NAS-Bench-201 and each hyperparameter configuration,
which represents a network architecture, is trained for 200
epochs. NAS-Bench-201 contains the image classification
datasets cifar-10, cifar-100 and ImageNet16-120.
FCNet. FCNet is a benchmark that consists of 62208 hy-
perparameter configurations. FCNet features a search space
of 4 architectural choices (i.e., the number of units and acti-

vation functions for two layers) and 5 hyperparameters (i.e.,
dropout rates per layer, batch size, initial learning rate and
learning rate schedule). The fidelity refers to the number of
epochs in FCNet and each hyperparameter configuration is
trained for 100 epochs. FCNet uses 4 popular UCI datasets
for regression and we run the 2 most expensive ones.

13.2. Choice of Parameters on Baseline Methods

We use implementations of all the baseline HPO methods
provided in Syne Tune [33]. We here list the parameters
used for running the baselines in our experiments. In gen-
eral, we follow the default settings in Syne Tune which are
also recommended in the previous work.
• Vanilla Bayesian Optimization (BO) [37] uses a Matérn

5
2 kernel with automatic relevance determination parame-
ters and the expected improvement (EI) acquisition func-
tion.

• ASHA [23], Hyperband [22] and PASHA [4] follow the
successive halving (SHA) [16] framework and sample
new configurations at random. We use the reduction fac-
tor ⌘ of 3 in all of them. In other words, the evaluations
are stopped after 1, 3, 9, 27, ... resource levels.

• A-BOHB [19] follows the SHA framework with ⌘ = 3. It
uses a stopping variant asynchronous scheduling, which
is different from the promotion variant asynchronous
scheduling used in ASHA. New configurations are se-
lected as in the vanilla BO.

• A-CQR [34] follows the SHA framework with ⌘ = 3 and
uses the promotion variant asynchronous scheduling as
ASHA. It uses BO to select the configuration and uses the
last observed values from the SHA framework to fit the
surrogate model. It uses a conformal quantile regression-
based surrogate model.

• BOHB [10] follows the SHA framework with ⌘ = 3 and
uses synchronous scheduling. It uses BO with a multi-
variate kernel density estimator (KDE) to select new hy-
perparameter configurations.

• DyHPO [45] uses the introduced deep kernel Gaussian
Process surrogate and multi-fidelity EI. It uses an RBF
kernel and the dense layers of the transformation function
have 128 and 256 units. It uses a convolutional layer with
a kernel size of three and four filters.

• Hyper-Tune [24] follows the SHA framework with ⌘ = 3
and uses the promotion variant asynchronous scheduling
as ASHA. It fits independent Gaussian process models at
different fidelities.
The experiments in § 5.4 and Supplementary Mate-

rial 11.6 contain three HPO methods and we use implemen-
tations of them provided in Syne Tune. We also provide the
parameter settings of the three methods as follows.
• CQR [34] uses BO with a conformal quantile regression-

based surrogate model to select new configurations.
• BORE [42] is evaluated with XGBoost [6] as the classifier

with its default setting. We set � = 1/4, consistent with
BORE’s default hyperparameter setting.

• REA [32] is an evolutionary algorithm that uses a pop-
ulation size of 10, and 5 samples are drawn to select a
mutation from.

	. Introduction
	. Related Work
	. Problem Formulation
	. Methodology
	. Estimation of Efficient and Saturation Points
	. Learning Curve Modeling
	. Warm-up And Post-processing Stages
	. FastBO and Generalization

	. Experiments
	. Anytime Performance
	. Efficiency on Configuration Identification
	. Effectiveness of Adaptive Fidelity Identification
	. Generality of The Proposed Extension Method

	. Conclusion
	. Notation
	. Proof of FastBO
	. Illustration on Efficient Point and Saturation Point
	. Discussion on Choice of Parametric Learning Curve Models
	. Extended Experiments
	. Extended Experiments on NAS-Bench-301
	. Extended Experiments of Sample Efficiency
	. Extended Experiments of Anytime Performance
	. Extended Experiments of Efficiency on Configuration Identification
	. Extended Experiments of Effectiveness of Adaptive Fidelity Identification
	. Extended Experiments of Generality of The Proposed Extension Method

	. FastBO Hyperparameter Setting, Experiments, and Discussions
	. Hyperparameter Setting
	. Experiments of Hyperparameter Setting
	. Discussion on Hyperparameter Setting

	. Experimental Setup
	. Benchmark Details
	. Choice of Parameters on Baseline Methods

