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In this supplementary document, we provide additional
materials to supplement our main submission. In the sup-
plementary video, we show more reconstruction results of
multiple people using our method on monocular in-the-wild
videos.
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1. Implementation Details
1.1. Neural Human Model

Parameterization Details. We simplify the human rep-
resentation with one neural network fp in our manuscript.
In practice, we model the geometry and texture field using
two separate neural networks similar to [3, 18]. Our SDF
network fp

s takes the point and the human pose parame-
ters θp as input and outputs the signed distance value sp
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along with global geometry features z of dimension 256.
Our texture network fp

c takes the point, the human pose pa-
rameters θp, points’ normals nd in deformed space, and the
extracted 256-dimensional global geometry feature vectors
z from the SDF network as input and predicts the radiance
value cp. Specifically, the points’ normals nd are calculated
by the spatial gradient of the signed distance field fp

s w.r.t.
the 3D position in deformed space, following [3, 21]. This
facilitates better disentanglement of human geometry and
appearance reconstruction.

Deformation Module. We define the SMPL-based map-
ping Tsmpl(·) from canonical space to deformed space and
its inverse mapping T−1

smpl(·) as follows:

Tsmpl(x,θ) =

nb∑
i=1

wi
c(x) Bi(θ)x, (15)

T−1
smpl(x,θ) = (

nb∑
i=1

wi
d(x) Bi(θ))

−1x, (16)

where Bi(θ) derived from the body pose parameters θ
represents the bone transformation matrix for joint i ∈
{1, ..., nb}. Here nb is equal to the total number of SMPL
bones. And w(·)(x) = {w1

(·)(x), ..., w
nb

(·)(x)} denotes the
skinning weights for x(·). Canonical points xp

c are associ-
ated with the nearest SMPL vertex’ skinning weights and
analogously for points xp

d in deformed space. Hence, a
canonical point xp

c is mapped to the point xp
d in deformed

space via LBS: xp
d = Tsmpl(x

p
c ,θ

p). Similarly, the canon-
ical correspondence xp

c for point xp
d can be found through

xp
c = T−1

smpl(x
p
d,θ

p).

Network Architecture. The canonical human shape net-
work fp

s for the p-th person is modeled as an MLP with 8
fully connected layers, each of which consists of a weight
normalization layer [14] and a softplus activation layer.
Each fully connected layer contains 256 neurons. Given
the input point, we apply positional encoding with 6 fre-
quency components to better model high-frequency details
[11]. The canonical human texture network fp

c is modeled
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as an MLP with 4 fully connected layers, each of which has
the same architecture as the human shape network layers.
Except, it uses the Sigmoid activation function for the last
layer and uses a ReLU [12] activation function for the rest
layers. All subjects in the scene are modeled individually
and share the same network architectures.

1.2. Background Modeling and Scene Composition

Quadruple Reparameterization We follow the inverted
sphere parameterization of NeRF++ [20] to represent the
background. Our human models are defined to be within
a spherical inner volume with a radius equal to 3 and
the background covers the complementary space. Specif-
ically, each 3D background point xb = (xb, yb, zb) is
reparametrized by the quadruple x′

b = (x′
b, y

′
b, z

′
b,

1
r ),

where ∥(x′
b, y

′
b, z

′
b)∥ = 1 and (xb, yb, zb) = r · (x′

b, y
′
b, z

′
b).

Here r denotes the magnitude of the vector from the cam-
era origin to xb. This reparameterization of the background
points helps to improve the numerical stability and weight
farther away points with lower resolution. To obtain the
background component RGB value, we follow NeRF++ and
sample 32 background points. This is done by uniformly
sampling 1

r in the range [0, 1
3 ], where 3 corresponds to the

pre-defined inner volume radius. Given the sampled 1
r , we

calculate the corresponding background point x′
b using the

geometric relationship derived in [20].

Scene Composition To obtain the final rendered pixel
value, we raycast the human layers and the background vol-
ume separately and composite the rendered color of humans
ĈH with the one of the background ĈB . The final pixel
color value is calculated by:

C = CH + (1− ÔH) CB , (17)

where ÔH =
∑N

i=1

∑P
p=1

[
opi

∏P
q=1

∏
j∈Zq,p

i

(
1− oqj

)]
is

the total opacity for all the person in the scene, and we fol-
low the same notations as our manuscript.

Network Architecture The background network f b con-
sists of two parts: the density network and the texture net-
work. The density network has the same architecture as the
canonical human shape network with 10 frequency compo-
nents to the input background points. The texture network
only includes 1 block of a fully connected layer with 128
neurons, a weight normalization layer, a ReLU activation
layer, and a Sigmoid activation layer at the end. Both the
density network and the texture network take the quadruple
parameterization of the sampled background point, view di-
rection, and per-frame learnable time encoding as input and
output the density and the view-dependent radiance value.
The per-frame time encoding helps to compensate for dy-
namic changes in the environment.

1.3. Preprocessing

To obtain pose initialization, we first estimate the SMPL [9]
parameters and the tracking ID for each person by the pre-
trained TRACE model [15]. Then we extract the bound-
ing box of the estimated SMPL model and feed it to the
ViTPose-H to obtain the corresponding 2D keypoints for
each subject. Non-maximum suppression (NMS) is applied
for each bone to filter out the potential duplicated estima-
tion. Finally, we employ the 2D reprojection loss L2d to
optimize SMPL parameter based on the estimated 2D joints:

Lp
2d =

K∑
i=1

s2i ρ(Π(Ji(θ
p,βp))− Ji), (18)

where K denotes the number of 2D joints. Ji and si rep-
resents the i-th estimated 2D keypoint from ViTPose and
its confidence score respectively. J (θp,βp) are the corre-
sponding 3D SMPL keypoints given the pose θp and body
shape βp parameters for subject p, and Π is the camera pro-
jection function, ρ(·) denote the robust Geman-McClure er-
ror function [4]. To alleviate the jittering of the pose esti-
mates, we also deploy a temporary consistency loss:

Lp
temp =

Nframe∑
i=1

∥∥J i(θp,βp)− J i−1(θp,βp)
∥∥2
2
, (19)

where J i(θp,βp) denotes all 3D joints for i-th frame.
Then, we calculate the total loss for the preprocessing stage:

Lpre =

P∑
p=1

(Lp
2d + λtempL

p
temp), (20)

where P is the number of subjects and λtemp is the hyper-
parameter to balance the weight of the temporal loss term.

1.4. Final Training Objectives

The final objective L is defined by:

L = Lrgb + λmaskLmask + λdepthLdepth + λinterLinter + λeLe

+ λbceLbce + λstabLstab, (21)

where Lrgb, Lmask, Ldepth, Linter, and Le are introduced in the
manuscript exhaustively (Eq. 9 - Eq. 14). Following [3], a
self-supervised ray classification loss Lbce is applied to de-
lineate dynamic foreground and background. Moreover, in
the early training stage, a stabilization loss Lstab is enforced
to supervise the opacity Ôp of p-th person to be close to 1
if it is inside the corresponding SMPL surface. The formula
of Lbce and Lstab are shown as follows:

Lbce = −ÔH log(ÔH) + (1− ÔH) log(1− ÔH), (22)
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Figure 7. MMM Dataset. We show the captured image, ground-
truth meshes, and ground-truth camera trajectories of our MMM
dataset.

Lstab =

P∑
p=1

∑
r∈Rp

smpl

∥∥∥Ôp(r)− 1
∥∥∥ , (23)

where Rp
smpl denotes the set of rays that intersect with the

SMPL of person p.

1.5. Training Details

It is essential to note that we initialize our canonical human
shape network with a generic SMPL body shape by using a
subset of motion sequences released in AMASS [10]. We
optimize our neural networks and pose parameters using the
Adam optimizer [6]. The learning rate for training our neu-
ral networks is set to l = 5e−4 and the learning rate for
optimizing the pose parameters is set at one-tenth of l ini-
tially. We decay the learning rates in half after 400 and 800
epochs respectively. The other Adam hyper-parameters are
set to β1 = 0.9 and β2 = 0.999. A model is trained on a
single NVIDIA A100 (80GB) with batch size 2048 for 2 to
5 days, depending on the number of subjects in the scene.

2. Evaluation Details
2.1. Hi4D Dataset

For all the experiments, we use 4 sequences (in total 515
frames), i.e. pair15-fight15-view4, pair16-jump16-view4,
pair17-dance17-view28, and pair19-piggyback19-view4, in
Hi4D [19] dataset to evaluate our method. We downsam-
ple all the frames by factor 2 for training efficiency with
470×640 image resolution.

2.2. MMM Dataset

We collect a new dataset called Monocular Multi-huMan
(MMM), which is captured by a monocular dynamic cam-
era, to evaluate the monocular multi-person human recon-
struction task. This dataset contains six sequences with two
to four subjects in each sequence. Half of the sequences
(569 frames) are captured in the stage with ground-truth
meshes and camera trajectory for quantitative evaluation
and the others are captured in the wild for qualitative evalu-
ation. The ground-truth meshes are reconstructed by 106
synchronized cameras (53 RGB and 53 IR cameras) via
commercial software [2], while the hand-held camera tra-
jectories are tracked by AprilTag [16]. Specifically, we first
stick the printed AprilTag to the backside of the smartphone.
Then we locate the AprilTag in the stage coordinate using
our dense multi-view camera system. However, there is
still an offset between the AprilTag and the camera of the
smartphone. To get the ground-truth camera trajectories,
we utilize the silhouette loss between the projected ground-
truth mesh mask and human segmentation mask estimated
by RVM [8] to optimize the offset. The captured image, the
ground-truth meshes, and the ground-truth camera trajecto-
ries are shown in Fig. 7.

2.3. Reconstruction Comparisons

ECON [17] is a state-of-the-art regression-based model
for reconstructing 3D humans from individual frames and
Vid2Avatar (V2A) [3] is a self-supervised method that re-
constructs a single performer from monocular videos with-
out using 3D human data. For a fair comparison, we extend
V2A to multi-person scenarios by learning a distinct human
model for each subject in the scene individually. Specifi-
cally, we simply use the pre-trained checkpoints of ECON
and infer the 3D human shapes from our video frames. We
feed V2A with the same pose and mask initialization as ours
without modifying the original framework, objectives, and
hyperparameters. In order to visualize the multi-person re-
constructions of V2A in overlapped format, we generate the
depth map for each subject and compose the rendered nor-
mal maps based on the depth value that represents the dis-
tance between the point and the camera origin, i.e., we se-
lect the pixel value of the subject that is closer to the camera
origin.
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Figure 8. Additional qualitative reconstruction comparison. We show both the overlaid and separated reconstruction results for each
method. Red bounding boxes: the incomplete reconstruction of the occluded part. Orange bounding boxes: incorrect instance segmenta-
tion results caused by the surrounding visual complexities. Black bounding boxes: inaccurate spatial arrangement due to pose error.

Input Reference Shuai et al. Ours

Figure 9. Additional qualitative rendering comparison. Our
method achieves more plausible renderings with sharp boundaries.

We follow the evaluation protocol of Hi4D for quanti-
tative comparisons, i.e., we first perform the ICP between
each reconstructed mesh and the corresponding ground-
truth instance mesh and then we calculate the reconstruc-
tion metrics. However, since ECON doesn’t include human
tracking inherently, we additionally apply the Hungarian
matching based on the cost matrix of the ICP between each
reconstructed mesh and the ground-truth instance mesh af-
ter the convergence of ICP.

Image SCHP Ours

Figure 10. Addtional instance segmentation comparisons. Our
method produces more accurate instance segmentation masks
while SCHP fails to associate the pixels to the correct subject when
people closely interact.

3. Additional Experimental Results

3.1. Reconstruction Comparisons

We provide additional qualitative reconstruction compar-
isons with ECON [17] and Vid2Avatar [3] in Fig. 8. Com-
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Figure 11. Comparison between Tri-plane and MLP represen-
tation. Tri-plane representation with a shared decoder converges
faster than MLP-based human representation. However, Tri-plane
representation produces less fine-grained surface details.

pared to state-of-the-art human reconstruction methods in
both categories (learning-based and optimization-based),
our method outperforms them by a substantial margin both
quantitatively (cf . Tab. 2 in manuscript) and qualitatively
(cf . Fig. 8). Our framework recovers the fine-grained sur-
face details and maintains complete human bodies.

3.2. Novel View Synthesis Comparisons

We show additional qualitative novel view synthesis com-
parisons in Fig. 9. Our method achieves better disentan-
glement between multiple people, yielding more plausible
novel view renderings with clearly sharp boundaries.

3.3. Instance Segmentation Comparisons

Our primary goal is not to provide a standalone method for
instance segmentation, but accurate segmentation of peo-
ple is an essential component to achieve high-quality recon-
struction. We complement the qualitative comparisons with
SCHP [7] in Fig. 10. Our instance segmentation is most ef-
fective when people are in contact. Our method produces
more accurate instance segmentation masks while SCHP
fails to associate the pixels to the correct subject when peo-
ple closely interact. To provide further evidence, we recal-
culate the metrics on frames labeled as “contact” by Hi4D,
which correlates with occlusion. Tab. 6 reveals a more pro-
nounced difference between MultiPly, SCHP, and the ini-
tialization than Tab. 4 in the main paper did (for instance
95.1% IoU vs 91.2% (Init.) and 90.5% (SCHP)).

Method IoU ↑ F1 ↑ Recall ↑ Precision ↑

SCHP 0.905 0.972 0.973 0.972

Ours (Init.) 0.912 0.975 0.992 0.959
Ours (Progressive) 0.951 0.987 0.994 0.979

Table 6. Instance segmentation evaluation on “contact” Hi4D.

3.4. Pose Estimation Comparisons

We supplement the qualitative comparison with state-of-
the-art multi-person pose estimation approaches in Fig. 13.
Our framework performs effectively in correcting implausi-
ble human poses and spatial arrangement.

3.5. Neural Tri-Plane Human Representation

We demonstrate in this section that our strategies to ob-
tain robust instance segmentation and plausible 3D human
poses generalize well to different neural human represen-
tations. Similar to our neural human representation in
the manuscript, we proposed another neural human model
that is designed based on the tri-plane representation [1]
with a commonly shared feature-conditioned MLP decoder.
Specifically, each human model is represented as a sepa-
rate tri-plane in canonical space which allows us to query
points’ high-frequency feature vectors efficiently from the
feature plane parallel to xy, yz, xz. We conduct the abla-
tion studies under the same evaluation protocol as the main
paper and show the quantitative results in Tab. 7. It demon-
strates our key algorithmic components (layer-wise volume
rendering, progressive prompting strategy, and confidence-
guided alternating optimization) consistently improve the
reconstruction quality, showing the superiority of our pro-
posed learning schemes.

Furthermore, the proposed neural tri-plane human rep-
resentation is able to accelerate the training procedure by
a considerable margin (halved the convergence time com-
pared to MLP-based human representation). The reasons
are twofold: 1) tripled feature planes provide more expres-
sive high-frequency latent features and querying points’ fea-
tures directly from tri-plane perform more efficiently com-
pared to using fully connected layers with positional encod-
ing, 2) our shared decoder can be trained to decode the com-
mon features among all subjects in the scene which is par-
ticularly beneficial since the people in the same scene tend
to have a similar dressing style. However, this represen-
tation produces less fine-grained surface details in turn, as
shown in Fig. 11.

4. Visualization
As shown in Fig. 12, our method MultiPly generalizes to
various people with different human shapes and miscella-
neous clothing styles and performs robustly against differ-
ent levels of occlusions, close human interaction, and envi-
ronmental visual complexities.

5. Limitations and Societal Impact Discussion
Our method struggles with fast human movement that po-
tentially results in strong motion blurs in image observa-
tions. This would negatively impact our pose initializa-
tion and obstruct photorealistic reconstructions. Our ap-
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Figure 12. Additional qualitative results. Our method MultiPly generalizes to various people with different human shapes and miscel-
laneous clothing styles and performs robustly against different levels of occlusions, close human interaction, and environmental visual
complexities.

Metrics
Pose Estimation Human Reconstruction

MPJPE ↓ MVE ↓ CD ↓ PCDR ↑ V-IoU ↑ C− ℓ2 ↓ P2S ↓ NC ↑

Initial pose 75.3 90.8 235.6 0.566 - - - -

Layer-wise volume rendering 70.8 85.1 248.6 0.605 0.746 3.85 3.69 0.719
+ Progressive SAM 70.7 85.0 247.7 0.609 0.793 2.72 2.44 0.777
+ Confidence-guided OPT 69.7 83.6 217.0 0.689 0.803 2.62 2.39 0.785

Table 7. Quantitative ablation studies on Hi4D based on tri-plane representation. We demonstrate the importance of the proposed
progressive prompt for SAM and confidence-guided alternating optimization. Both key components effectively contribute to the final
reconstruction quality. This improvement generalize to different neural human representations.
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Figure 13. Qualitative pose estimation comparisons. CLIFF, TRACE, and our pose initialization all fail to estimate the correct spatial
arrangement of the close interacted pairs on the Hi4D dataset. Simply optimizing both pose and shape jointly during training doesn’t help to
refine inaccurate pose estimates. In contrast, our confidence-guided alternating optimization performs effectively in correcting implausible
human poses and spatial arrangement (e.g. the interpenetration between the arm and the body, and the wrong depth order of legs).

proach demonstrates its superior performance with gar-
ments that exhibit topological similarity to the human body.
Loose clothing, such as skirts or free-flowing garments, still
presents challenges owing to their rapid dynamics. Based
on the current formulation and human modeling, the com-
putational complexity of our framework increases linearly
with the number of involved persons, making it inefficient
for a crowd of people in the scene. Our neural tri-plane
human representation with shared decoder architecture pre-
sented in the supplementary material makes a step towards
a more efficient formulation. However, this is far from suf-
ficient. Future work could incorporate recent advances in
fast and memory-efficient neural representations [5]. Fur-
thermore, our method does not explicitly model hands and
we believe the integration of an expressive human model
[13] is a promising future direction.

MultiPly, for the first time, enables high-fidelity digiti-
zation of multiple people under natural interaction from a
single monocular video, which has the potential to make
a broad range of downstream applications in movie and
gaming industries, and AR/VR. The final outcome of our
framework is multiple realistic human avatars, that can be
animated with driven signals. This could raise risks of pri-
vacy leaks and misuse of human avatars, for example, deep-
fakes. Primary attention should be given to addressing these
concerns before incorporating digital human avatars into
products. Openly, the objective of this work is to facili-
tate the application of the technology in ways that are ben-
eficial for society. Regrettably, the prevention of malevo-
lent applications of such technology remains unattainable.
Nevertheless, we contend that a thorough examination of
these methodologies with maximum transparency, includ-

ing the discussion of technical intricacies in the paper, along
with the release of code and data, should be prioritized over
undisclosed research. This approach is crucial for develop-
ing effective countermeasures to mitigate the potential for
unscrupulous applications.
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