
SCEdit: Efficient and Controllable Image Diffusion
Generation via Skip Connection Editing

Supplementary Material

In the supplementary material, we provide more implemen-
tation details (Appendix A) including the dataset, architec-
ture design, and hyperparameters used in training and in-
ference. Then, we demonstrate the ablation experiments
(Appendix B) with SC-Tuner and CSC-Tuner on different
tasks. Furthermore, we showcase additional comparisons
with existing methods and qualitative results (Appendix C).

A. Implementation details
A.1. Dataset description

In this work, we consider three datasets for our experi-
ments: COCO Dataset [9], Customized Style Dataset [11],
and LAION Dataset [16]. For the text-to-image generation
setting, we utilize the well-known COCO2017 Captions,
which consists of 118,287 training images and 591,753 cap-
tions for efficient fine-tuning, and Customized Style, which
contains 30 training images of different styles for few-shot
fine-tuning. We use LAION Dataset for the controllable
image synthesis setting. The three datasets are illustrated in
Tab. 1.

A.2. Hyperparameters

We provide an overview of the hyperparameters for all
trained models, divided by the task in Tab. 2.

A.3. Architectures design

In the SCEdit framework, the central strategy involves edit-
ing the skip connections, which gives rise to two archi-

tectures: SC-Tuner for text-to-image generation and CSC-
Tuner for controllable generation. These architectures are
straightforward to implement and can be easily transferred
to other similarly designed modules. In Alg. 1, we provide
the forward function implementation of SCEdit written in
PyTorch-like style.

A.4. Conditions for generation

We generally follow the implementations of condition ex-
traction from ControlNet [22] and T2I-Adapter [13], with
details as follows:
• Canny Edge Map. We employ canny edge detector [4],

utilizing random thresholds during training and fixed
thresholds with a low value of 100 and a high value of
200 during inference. The sample images are presented
in Fig. 8a.

• Depth Map. We use MiDaS depth estimation [14] with
default settings. The sample images are shown in Fig. 8b.

• HED Boundary Map. We use HED boundary detec-
tion [20] with default settings. The sample images are
illustrated in Fig. 9a.

• Semantic Segmentation Map. We employ the Uni-
Former [8] semantic segmentation model, which was
trained on the ADE20K [23] dataset. The sample images
can be seen in Fig. 9b.

• Pose Keypoint. We employ OpenPose [5] as the human
pose estimation model and visualize its prediction as con-
ditions. The sample images are showcased in Fig. 9c.

• Color Map. We preserve the spatial hierarchical color

Table 1. The summary of the datasets for the experiments.

Dataset #Description #Task #Train #Test
image prompt image prompt

Common Objects in Context (COCO)
COCO2017 Captions [9] common objects text-to-image 118,287 591,753 5,000 25,014

Customized Style Dataset
3D [11] 3D style text-to-image (few-shot) 30 30 - -
Anime [11] ainme style text-to-image (few-shot) 30 30 - -
Flatillustration [11] flatillustration style text-to-image (few-shot) 30 30 - -
Oilpainting [11] oilpainting style text-to-image (few-shot) 30 30 - -
Sketch [11] sketch style text-to-image (few-shot) 30 30 - -
Watercolor [11] watercolor style text-to-image (few-shot) 30 30 - -

Large-scale Artificial Intelligence Open Network (LAION)
LAION-ART [16] filtered version controllable generation 624,558 624,558 - -



Table 2. The summary of the training and inference settings for the experiments.

Config #Task
Text-to-image Text-to-image (few-shot) Controllable Generation

Dataset COCO [9] Customized Style [11] LAION-ART (Filtered) [16]
Batch size 32 8 64
Optimizer AdamW [10] AdamW [10] AdamW [10]
Weight decay 0.01 0.01 0.01
Learning rate 0.00005 0.00005 0.00005
Learning rate schedule Constant Constant Constant
Training steps 100000 1500 100000
Data preprocess Resize, CenterCrop Resize, CenterCrop Resize, CenterCrop
Resolution 512×512 512×512 512×512
Pre-trained SD v1.5 [1] SD v1.5 [1] SD v2.1 [2]

Sampler DDIM [18] DDIM [18] DDIM [18]
Sample steps 50 50 50
Guide scale 3.0 7.5 7.5

Device A100×8 A100×1 A100×16
Training strategy AMP / Float16 AMP / Float16 AMP / Float16
Library SWIFT [12] SWIFT [12] SWIFT [12]

Algorithm 1 Implementation of SCEdit in PyTorch-like style.

# SC-Tuner
def forward(self, x, t=None, cond=dict()):

...
# input_blocks
hs = []
for i, blk in enumerate(self.in_blks):

h = blk(h, emb, context)
hs.append(h)

# middle_block
h = self.mid_blk(h, emb, context)

# output_blocks
for i, blk in enumerate(self.out_blks):

skip_h = self.tuners[i](hs.pop())
h = torch.cat([h, skip_h], dim=1)
h = blk(h, emb, context)

# Single CSC-Tuner
def forward(self, x, t=None, cond=dict()):

...
# Dense Conv for conditions
guid_hs = []
guid_hint = self.in_hint_blks(hint, emb,

context)
for i, blk in enumerate(self.hint_blks):

guid_hint = blk(guid_hint, emb, context)
guid_hs.append(guid_hint)

...
# output_blocks
for i, blk in enumerate(self.out_blks):

skip_h = self.tuners[i](hs.pop() + self.
scale * guid_hs[::-1][i])

h = torch.cat([h, skip_h], dim=1)
h = blk(h, emb, context)

information through a process of 64× downsampling of
the image, subsequently followed by an upsampling to
its original dimensions. The sample images are demon-
strated in Fig. 10a.

• Inpainting. We employ the mask generation strategy
from LaMa [19] for conditional generation on the in-
painting task. The sample images are demonstrated in
Figs. 10b and 10c.

For all the aforementioned conditions, we utilize the same
training dataset (LAION-ART [16]) and hyperparameters
across the tasks. The exception is the pose-conditional task,
for which we exclusively utilize a subset of images contain-
ing human poses, amounting to a total of 162,338 instances.
Additionally, for the inpainting task, we follow the common

approach of using both masks and cutouts as combined con-
ditional inputs.

B. Ablation studies
B.1. SC-Tuner structure

We ablate our SC-Tuner using the default setting in Tab. 3.
It is evident that our method allows for flexible design, in-
cluding the intermediate dimensions of tuners, the number
of utilized skip connection layers, and the selection of sub-
modules.

In Tab. 3a, we retain the dimensions of the skip con-
nection features as the default intermediate dimensions for
the tuner. As the dimensions are reduced proportionally,



Table 3. SC-Tuner ablation experiments of efficient fine-tuning task on COCO2017. Default settings are marked in gray.

(a) Ablation on downscaling ratio of dimensions.

Ratio FID Params Mem.

×1 13.82 19.68M 29.02G
×5 13.92 3.94M 28.29G
×10 13.99 1.98M 28.06G

(b) Ablation on skip connection (SC) layers.

SC Indexes FID Params Mem.

{0,11} 14.45 3.48M 28.11G
{0,3,6,9,11} 13.96 7.79M 28.56G
{1,2, ..., 12} 13.82 19.68M 29.02G

(c) Ablation on tuner submodules.

Module FID Params Mem.

Linear 13.82 19.68M 29.02G
Conv 13.88 22.13M 28.65G
ResPrefix [7] 14.38 21.64M 30.54G

Table 4. CSC-Tuner ablation experiments of controllable generation task on LAION dataset. Default settings are marked in gray.

(a) Ablation on convolution kernel size.

Kernel FID Params Mem.

1 73.18 28.82M 34.78G
3 71.78 99.11M 35.28G

(b) Ablation on skip connection (SC) layers.

SC Indexes FID Params Mem.

{0,3,4,6,7,9,11} 85.42 17.14M 34.48G
{1,2,3, ..., 12} 73.18 28.82M 34.78G

(c) Ablation on tuner submodules.

Module FID Params Mem.

Single Conv 73.18 28.82M 34.78G
Dual Conv 70.54 37.82M 35.31G

there is a corresponding decrease in the number of param-
eters. Despite this reduction, the decline in memory con-
sumption is not substantial, and the FID [17] fails to show
an improvement compared to the default setting. Similarly,
in Tab. 3b, a performance degradation is observed when
we reduce the number of skip connection layers by inter-
vals. Our SC-Tuner is designed with the flexibility to in-
terchange its internal components, allowing for the use of
convolution networks or independent residual networks. As
demonstrated in Tab. 3c, even the most elementary com-
ponents, such as linear layers, can offer certain advantages
while maintaining a comparable number of parameters.

B.2. CSC-Tuner structure

We conducted a series of ablation studies based on the mod-
ular design of the CSC-Tuner to evaluate the impact of each
component on the overall performance.

From a quantitative perspective, in Tab. 4a, we can ob-
serve that larger convolution kernels of condition encoder,
although increasing the number of parameters, also con-
tribute to a certain reduction in the FID. In Tab. 4b, omit-
ting some of the skip connections results in an increase in
the FID. Subsequently, as shown in Tab. 4c, we ablate with
altering the internal structure of the tuner by shifting from
a single convolution layer to a dual convolution layer with
dimension reduction, resulting in improved FID score.

Conv Kernel=1 Conv Kernel=3 Drop Layers ReductionDualConvCondition More Data

[chess candle, gothic illustration]

[close look up to an engine wheel ]

Figure 1. Qualitative comparison on various CSC-Tuner structure designs.



From a qualitative perspective, we compared the afore-
mentioned experimental setups and also train on a larger
dataset (24M) under the default setting. As evident from
Fig. 1, the enlargement of the convolution kernel size ex-
pands the receptive field, achieving richer detail in the gen-
erated images. Training with more data also benefits from
realistic effects. On the other hand, omitting some of the
skip connections generally leads to a loss of image con-
tent. The dual convolution with dimension reduction ex-
hibits poor control over conditions, underscoring the impor-
tance of the channel dimension in generation.

C. Additional results
C.1. Fine-tuning on content images

Generation on customized style is one of the most common
fine-tuning downstream tasks and is also widely used within
the community. SCEdit also has great performance in fine-
tuning with custom content images. In Fig. 2, we showcase
the capability for detail generation on live subjects and ob-
jects using DreamBooth Datasets [15].

C.2. Generalization across different models

We also conduct experiments on various models in differ-
ent tasks to demonstrate the generalization ability of our
method across different models. The results of the text-to-
image tuners based on SD2.1 [2] and SDXL [3] can be seen
in Fig. 3, and the results of the conditional controllers based
on SDXL are displayed in Fig. 4.

C.3. Performance with minimal parameters

We present the results of a text-to-image fine-tuning task
with small parameters in Fig. 5. For the configuration with
a parameter count of 19K, we only retain a single layer of
SC-Tuner and find that the smaller parameter count requires
careful training and extended training time.

C.4. Additional qualitative comparison

In Fig. 6, we present additional qualitative comparison for
the controllable generation task, using canny edge maps,
depth maps, and semantic segmentation maps as conditions,
including comparisons with methods ControlNet [22], T2I-
Adapter [13], ControlLoRA [6], and ControlNet-XS [21].

C.5. Additional qualitative results

In Fig. 7, we demonstrate the results of generating im-
ages by extracting different conditional information from
the same image and using it as control conditions. In Fig. 8,
Fig. 9, and Fig. 10, we present additional qualitative re-
sults for the controllable generation task, with conditions
including canny edge map, depth map, hed boundary map,
semantic segmentation map, pose keypoint, color map, out-
painting, and inpainting.
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Figure 2. Fine-tuning on live subjects and objects using Dream-
Booth Datasets (5-6 images per class) with different contexts.

SD
2.

1

SD
XL

A boy wearing a green jacket

Retro Game Papercut Sticker Design Action Figure

Figure 3. Generation results of various styles on SD2.1 and SDXL.
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Figure 4. Generation results of various conditions on SDXL.
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Figure 5. Generation results under different parameters in 3D style
fine-tuning task with the same prompt.

D. Limitations and societal impacts
This work aims to provide users with a method for efficient
fine-tuning and controlled synthesis under diverse condi-
tions. The tuning stage based on the pre-trained models
while freezing the backbone network, so its transfer abil-
ity depends to a large extent on the performance of the up-
stream model. In addition, it generates results that meet
expectations based on the training data and the specified
conditional inputs supplied by the users. Conversely, the
malicious utilization of high-risk data could potentially lead
to the generation of misleading outcomes. This underscores
the importance of ethical considerations in the deployment
of generative models to prevent the propagation of harm-
fully biased or false information.



ControlLoRA ControlNet-XS T2I-Adapter ControlNetCondition SCEdit

[bicycle and pannier backpack]
(a) Comparative results of generation conditioned on canny edge map.

[agriculture, purple theme]
(b) Comparative results of generation conditioned on semantic segmentation map.

[short blue cat, cat motorcycle wearing a helmet, on the road]

[close up lotus flower, water droplets on petals, natural features]
(c) Comparative results of generation conditioned on depth map.

Figure 6. Additional qualitative comparison on the controllable generation of our approach with other strategies conditioned on canny
edge maps, semantic segmentation maps, and depth maps. The areas in the boxes are enlarged for detailed comparisons.
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[a man facing back meditating on a hill, chain of mountains in front of him]

Figure 7. Additional qualitative results on controllable generation using the same original image for different conditions.

[a dark brown to black spaniel dog] [a dozen chocolate chip cookies]

[gardenia flowers in a vase]

[parthenon with wide angle lens]

w/ ink wash paintingw/ pixel art[a medevil castle and town]
(a) Generative results conditioned on canny edge map.

[a wolf standing in front of a plane] [a dog is sitting under a tree]

[morthern mockingbird]

[bull in astronaut uniform]

w/ sketch[powdered milk] w/ pixel art
(b) Generative results conditioned on depth map.

Figure 8. Additional qualitative results on controllable generation using canny edge map and depth map conditions.



[western steampunk] [French bulldog as barista]

[woman, blue eye, blonde hair]

[beautiful smiling girl]

w/ sketch[African Elephant] w/ anime
(a) Generative results conditioned on hed boundary map.

[a dead tree in front of a cloudy sky] [stir-fried potatoes]

[basketball backboard, golden hour]

[beautiful dark brown woman]

[dark green mech with golden inlay] w/ Minecraftw/ pixel art
(b) Generative results conditioned on semantic segmentation map.

[a man wearing a polo shirt] [goblin, dagger, fantasy]

[a portrait of girl with blonde hair]

[waist up half portrait of a girl]

[an old explorer with beards] w/ flatillustrationw/ Minecraft
(c) Generative results conditioned on pose keypoint.

Figure 9. Additional qualitative results on controllable generation using hed boundary map, semantic segmentation map, and pose
keypoint conditions.



[classical-style painting, lush valley] [coloring book]

[colorful spring floral bouquet]

[anime boy]

[showers of hearts and flowers] w/ LEGOw/ water color
(a) Generative results conditioned on color map.

[a photography of swissmountain] [the rose]

[a tent with snowy landscape]

[a lab worker wearing white overall]

[a small waterfall runs] w/ pixel artw/ Minecraft
(b) Generative results conditioned on outpainting.

[a natural wonderland] [a realistic cat, vivid, beauty] [beauty and diversity of culture]

[an orca jumping in the lake] [woman face with baseball hat][zoomed up picture of a cat’s eye]
(c) Generative results conditioned on inpainting.

Figure 10. Additional qualitative results on controllable generation using color maps, outpainting, and inpainting conditions.
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