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In this supplementary file, we will explain some imple-
mentation details in Section A. More details on comparison
methods are introduced in Section B. In Section C, we will
have more discussions on ablation study. In Section D, we
will show more results, including our results and qualita-
tive comparisons. Finally, in Section E, we will explain the
watermark removal module.

A. Implementation Details

Data Processing. During the training, we will randomly
sample 16 frames from original videos with a sampling rate
of 4. We will randomly apply a horizontal flip to videos.
The videos are center-cropped. In our proposed VideoBooth
dataset, the image prompt is obtained by segmenting the
subject from the first frame of a video. It should be noted
that it is the first frame of the whole original video rather
than the first frame of the video clip used for training. This
avoids the image prompt being exact as the first frame dur-
ing the training. However, even with this operation, the pose
and scales of the subject in the first frame of the training
clip are still similar to those of the image prompt. Also,
visible parts of image prompts are almost the same as those
in the first frame of training clips. This would lead to the
model learning trivial solutions that the generated video has
the exact viewpoint, pose, and scale as the image prompt.
To alleviate this problem, we do some data augmentation to
image prompts during the training. 1) To make the visible
parts of image prompts to be different from those of train-
ing clips, we randomly crop image prompts. We cut off the
edges of image prompts. The probability of cutting off a
certain edge is set as 25%. For each edge, we randomly
crop a portion of the border. The ratio of cropped parts is
uniformly sampled from 0.01 to 0.2. 2) To introduce diverse
scales and positions in image prompts, we perform random
affine transformations to image prompts. We use the “trans-
forms.RandomAffine” function in PyTorch. The parameter
“degrees” is set as 30. The image will randomly rotate in
the range of 0 to 30 degrees. The parameter “translate” is set

as (0.1, 0.1). The image will be horizontally shifted in the
range of (−0.1∗ img width, 0.1∗ img width), and vertically
shifted in the range of (−0.1∗img height, 0.1∗img height).
The parameter “scale” is set as (0.8, 1.2), which specifies
the scale factor. Additionally, the parameter “fill” is set as
255, resulting in the exterior of the transformed image being
filled with a white color. 3) We horizontally flip the image.
The probability of flipping the image is set as 0.5. In future
work, we plan to use image-to-3D models [3, 6] to augment
views of image prompts.
Training. Our proposed VideoBooth injects the image
prompt in a coarse-to-fine manner. The full model is trained
in two stages. In the coarse stage, the model is trained
using 8 GPUs. The batch size per GPU is set as 2. The
global batch size is 16. We use the AdamW [4] optimizer.
The learning rate is set as 1 × 10−4, and the weight de-
cay is set as 0. The model is initialized with the pretrained
global mapper of ELITE [7]. For the fine stage, we use
the model from the coarse stage as the initialization. For
the newly added weights, we inherit weights from the base
video model. The K and V projections for the image prompt
are initialized with the K and V projection of cross-frame at-
tention. The fine stage is trained using 8 GPUs. The batch
size per GPU is set as 2. The global batch size is 16. We
use the AdamW [4] optimizer. The learning rate is set as
1×10−4, and the weight decay is set as 0. At the fine stage,
for the retention of the capability of classifier-free guidance,
we randomly set image prompts as null images, i.e. images
filled in black, and text prompts are set as null text. The
probability of setting these conditions to null is 0.1.

B. Comparison methods

Texutal Inversion. In Textual Inversion [2], the appearance
of target subjects is embedded into the text embeddings. A
text token S∗ is optimized to represent one specific sub-
ject. When applied to text-to-image models, multiple im-
ages containing the same object are required to optimize the
text token S∗. In the setting of video generation, we directly
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use multiple video clips split from the original long video to
optimize the text token. Once optimized, the text token S∗

is used to replace the word embeddings of the target subject
in the sentence to sample new videos.
DreamBooth. In DreamBooth [5], target subjects are in-
jected into text tokens and model weights simultaneously.
During the training, both model weights and a special token
S∗ are optimized. Similar to Textual Inversion, we use the
original video and text description to train the model. Mul-
tiple video clips sampled from the long video are employed
to optimize weights and text token S∗. Once trained, the
text token S∗ is inserted before the word embeddings of the
target object to sample new videos.
ELITE. Different from Textual Inversion and DreamBooth,
ELITE [7] is an encoder-based method for fast customized
generation. An encoder is trained to transform the im-
ages into embeddings. Local mapping and global mapping
are employed to transform the CLIP embedding of image
prompts into the features, which are fed into the cross-
attention module. We adapt ELITE to video generation. We
train the model using same data and same base video model.

C. More Discussions on Ablation Study
In this section, we show one more visual example of the
ablation study. In Fig. 7 of the main paper, we show that
the model with only coarse embeddings results in impre-
cise encoding of appearance. Both the model trained with
only fine embeddings and the model trained using the uni-
fied training strategy overfit to image prompts. In the two
examples shown in Fig. 7 of the main paper, the first frames
can take the image prompt, but the generated appearance is
distorted along the frames. In Fig. A2, we discuss another
case, which exhibits a different behaviour.
Only Coarse Embeddings. This ablation model injects im-
age prompts with only coarse embeddings via Image En-
coder. As shown in Fig. A2(a), coarse embeddings provide
coarse but not precise guidance. The face of the dog and
the shape of the head are not accurately captured. Our full
model shown in Fig. A2(d) can capture visual details.
Only Fine Embeddings. In this ablation model, we only
have fine embeddings of image prompts in cross-frame at-
tention layers. Recall that the purpose of fine embeddings
is to refine the encoding from coarse levels. In the example
shown in Fig. A2(b), the first frame does not successfully
embed the image prompt. Without coarse embeddings, the
generation of the appearance of the dog relies purely on the
propagation from the first frame. The failure in encoding
the image prompt into the first frame results in the follow-
ing frames having random appearances for the dog.
The Necessity of Coarse-to-Fine Training. In Video-
Booth, we propose the coarse-to-fine training strategy, i.e.,
train the coarse embeddings first and then train the attention
injection module. This ablation model is trained within one

stage. In the example shown in Fig. A2(c), the first frame
successfully takes the appearance of the image prompt. The
model generates a consistent appearance in all frames, but
the motion of this generated clip is small and not aligned
with the text prompt. We found that in the case of generat-
ing small motions or static frames, the coarse-to-fine train-
ing strategy can work well. However, when it comes to gen-
erating large motions as shown in Fig. 7 of the main paper,
the appearance will be distorted along frames.

D. More Qualitative Results
In Fig. A3 and Fig. A4, we show several groups of results
generated by our proposed VideoBooth. In each group,
video clips are generated using the same image prompt but
different text prompts. In Fig. A5, we show two groups
of results. In each group, video clips are generated using
the same text prompt but different subjects as specified in
the image prompts. In the first group, our model is capable
of differentiating the characteristics of pandas and reflect-
ing them in the generated videos. In the second example,
our model can generate several video clips for different cats
looking at the laptop. In Fig. A6, A7, A8, we show more
qualitative comparisons with baseline methods.

E. WaterMark Removal Module
Since the videos in WebVid dataset [1] have a watermark,
the model trained using this dataset generates videos with
a watermark in nature. To generate videos without water-
mark for better visual quality, we finetune the model with
an additional module using the Vimeo dataset [8]. We only
use text prompts and original videos to finetune the model.
As shown in Fig. A1, we add six blocks before the last
conv out layer of the base video model. The added six
blocks can be regarded as a small UNet. After the first
block, we downsample features by two times. Then after
the second block, features are downsampled by two times.
Then features are enhanced by two blocks. Finally, fea-
tures are upscaled with two consecutive blocks. Each block
upsamples features by two times. Inside each block, there
are two ResNet blocks. Skip connections are adopted be-
tween downsampling blocks and upsampling blocks. After
all blocks, we feed the model to one conv layer, which is
initialized with zero. The motivation for zero initialization
is to avoid the newly added blocks affecting the model. We
add the obtained features to the original features as residues.
The added features are fed into the final layer (i.e. Conv Out
layer) of the base video generation model. The newly added
modules and the last layer are optimized during the finetun-
ing. After finetuning, the watermark can be removed with-
out influencing the generative capability of VideoBooth. It
should be noted that we use the model without watermark
removal module when comparing with baselines.
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Figure A1. Illustration of Watermark Removal Module. We add a WaterMark Removal Module before the conv out layer. The output
of the watermark removal module is added as a residue to the original features. We finetune the newly added module and the conv out layer
using the video data [8] without watermarks.

Dog is running

(b) Only Fine Embeddings with Attention Injection

(a) Only Coarse Embeddings with Image Encoder

(c) Unified Training for Image Encoder and Attention Injection

(d) Full Model

Figure A2. More Visual Analysis on Ablation Study.
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Figure A3. More Visual Results of VideoBooth.
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an extreme close up of panda sitting and eating bamboo

panda is chilling out on the tree, chengdu, china

panda in the forest of reeds. china

panda eating bamboo near chengdu, sichuan province, china hd video
Figure A4. More Visual Results of VideoBooth.
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Figure A5. More Visual Results of VideoBooth.
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Figure A6. Qualitative Comparison with Baseline Methods.
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lion in the bush grass. south africa, kruger national park.

Figure A7. Qualitative Comparison with Baseline Methods.
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bear eating fish using claws by brooks falls in remote forest 
wilderness national park and reserve alaska america

Figure A8. Qualitative Comparison with Baseline Methods.
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