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6. Appendix

6.1. Dataset Details

Training: In Stage-I, we assemble the training sets of 8
public datasets, including Pancreas-CT [52], AbdomenCT-
1K [40], CT-ORG [51], CHAOS [32], AMOS22 [25],
BTCV [34], WORD [38] and TotalSegmentator [60]. These
datasets exclusively contained organ labels. In Stage-II,
we add CT images from the training sets of LiTS [5] and
KiTS [20]. The overall seen categories used for training
consist of 25 organ classes and 2 tumor classes (Liver Tu-
mor and Kidney Tumor).

(1) Pancreas-CT [52] consists of 82 contrast-enhanced
abdominal CT volumes. This dataset only provides the pan-
creas label annotated by an experienced radiologist, and all
CT scans have no pancreatic tumor.

(2) AbdomenCT-1K [40] consists of 1112 CT scans from
five datasets and includes annotations for the liver, kidney,
spleen, and pancreas.

(3) CT-ORG [51] comprises 140 CT images containing
6 organ classes. This dataset is sourced from eight different
medical centers. Predominantly, these images display liver
lesions, encompassing both benign and malignant types.

(4) CHAOS [32] provides 40 CT scans including healthy
abdomen organs without any pathological abnormalities
(tumors, metastasis, and so on) for multi-organ segmenta-
tion.

(5) AMOS22 [25], the multi-modality abdominal multi-
organ segmentation challenge of 2022, contains 500 CT
scans with voxel-level annotations of 15 abdominal organs.

(6) BTCV dataset [34] contains 30 subjects of abdominal
CT scans where 13 organs are annotated by interpreters un-
der the supervision of radiologists at Vanderbilt University
Medical Center.

(7) WORD [38] collects 150 CT scans from 150 patients
before the radiation therapy in a single center. All of them
are scanned by a SIEMENS CT scanner without appear-
ance enhancement. Each CT volume consists of 159 to 330
slices of 512× 512 pixels. All scans of WORD dataset are
exhaustively annotated with 16 anatomical organs.

(8) TotalSegmentator [60] consists of 1024 CT scans of
different body parts with a total of 104 labeled anatomical
structures. Only organ labels are adopted in this paper.

(9) LiTS [5] contains 131 and 70 contrast-enhanced ab-
dominal CT scans for training and testing, respectively. The
data set was acquired by different scanners and protocols at
six different clinical sites, with a largely varying in-plane

Full Name of Tumor Subtype Count
Adenocarcinoma 278
Mucinous adenocarcinoma 64
Signet ring cell adenocarcinoma (rare) 29
Adenosquamous carcinoma (rare) 17

Table 6. Dataset details of the real-world colon tumor segmenta-
tion dataset.

resolution from 0.55 to 1.0 mm and slice spacing from 0.45
to 6.0 mm.

(10) KiTS [20] includes 210 training cases and 90 test-
ing cases with annotations provided by the University of
Minnesota Medical Center. Each CT scan has one or more
kidney tumors.
Inference: We employ the MSD dataset [2] that encom-
passes a range of segmentation tasks for five tumor types
in CTs. Among these, pancreas tumors, lung tumors, colon
tumors, and hepatic vessel tumors belong to unseen cate-
gories. A real-world, private dataset containing 388 3D CT
volumes of four distinct colon tumor subtypes is also uti-
lized for testing.

(1) MSD CT Tasks [2] includes liver, lung, pancreas,
colon, hepatic vessel, and spleen tasks for a total of 947
CT scans with 4 organs and 5 tumors.

(2) To further evaluate the proposed method, we collect a
large real-world colon cancer CT dataset, which consists of
388 patients diagnosed with colon cancer. For each patient,
an abdominal CT (venous phase) scan is collected, and the
tumor region is annotated by an experienced gastroenterol-
ogist and later verified by another senior radiologist. Dur-
ing the annotation phase, the physicians are also provided
with the corresponding post-surgery pathological report to
narrow down the search area for the tumors. All the scans
share the same in-plane dimension of 512 × 512, and the
dimension along the z-axis ranges from 36 to 146, with a
median of 91. The in-plane spacing ranges from 0.60×0.60
to 0.98× 0.98 mm, with a median of 0.76× 0.76 mm, and
the z-axis spacing is from 5.0 to 7.5 mm, with a median of
5.0 mm. There are four tumor subtypes in this dataset. The
full name and incidence count for each disease are shown
in Tab. 6. It is important to note that signet ring cell adeno-
carcinoma and adenosquamous carcinoma constitute only
an exceedingly small proportion of all colon cancer cases,
illustrating the long-tailed distribution characteristic of real-
world disease incidence.

We summarize all the datasets in Tab. 7. As our main



Datasets #Target #Scans Annotated categories
Pancreas-CT [52] 1 82 Pancreas
AbdomenCT-1K [40] 4 1000 Spleen, Kidney, Liver, Pancreas
CT-ORG [51] 4 140 Lung, Liver, Kidneys and Bladder
CHAOS [32] 4 40 Liver, Left Kidney, Right Kidney, Spleen
AMOS22 [25] 15 500 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, Pan, RAG, LAG, Duo, Bla, Pro/UTE
BTCV [34] 13 30 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Aor, IVC, R&SVeins, Pan, RAG, LAG
WORD [38] 16 150 Spl, RKid, LKid, Gall, Eso, Liv, Sto, Pan, RAG, Duo, Col, Int, Rec, Bla, LFH, RFH
TotalSegmentator [60] 104 1024 Spl, RKid, LKid, Gall, Liv, Sto, Pan, RAG, LAG, Eso, Duo, Small Bowel, Colon, and so on.
LiTS [5] 2 201 Liver, Liver Tumor
KiTS [20] 2 300 Kidney, Kidney Tumor

MSD CT Tasks [2] 9 947
Spl, Liver, Liver Tumor, Lung Tumor, Colon Tumor, Pancreas and Pancreas Tumor,
Hepatic Vessel and Hepatic Vessel Tumor

real-world colon tumor dataset 4 388 Colon Tumor with four subtypes

Table 7. The information for all datasets used for training and testing.

objective is not dealing with partial label problem, we di-
rectly adopt the successful data processing strategy in [36].
Concretely, we pre-process CT scans using isotropic spac-
ing and uniformed intensity scale to reduce the domain
gap among various datasets. Then we unify the label in-
dex for all datasets. For these datasets (KiTS, WORD,
AbdomenCT-1K, and CT-ORG), which do not distinguish
between the left and right organs, we split the organ (Kid-
ney, Adrenal Gland, and Lung) into left part and right
part. Since we formulate each organ segmentation result as
a binary mask, we can organize the segmentation ground
truth for these overlapped organs independently in a bi-
nary mask manner. During traning, we associate fundamen-
tal queries with organ classes, and advanced queries with
tumor classes. The corresponding relationship is shown
in Tab. 8.

6.2. Qualitative Analysis on Real-World Colon Tu-
mor Segmentation Dataset.

For qualitative analysis on real-world colon tumors, we
present visualizations of segmentation results in Fig. 5.
This shows that our approach achieves much better zero-
shot segmentation performance on real-world colon tumors
compared with other methods.

6.3. Detailed Results of Real-World Colon Tumor
Segmentation Analysis.

In Tab. 9, we provide a detailed analysis of the detection
and segmentation performance of ZePT and OVSeg [35],
the second-ranked method, for four subtypes of colon tu-
mors within the real-world colon tumor dataset. ZePT
consistently demonstrates superior detection and segmen-
tation capabilities over OVSeg for both commonly encoun-
tered and rare subtypes of colon tumors. In the analysis
of segmentation performance for the common colon can-
cer subtypes, Adenocarcinoma and Mucinous Adenocar-
cinoma, ZePT exhibited a substantial enhancement over

OVSeg [35] in terms of DSC, achieving increases of
33.80% and 22.66%, respectively. In the segmentation
of rare colon cancer subtypes, namely Signet Ring Cell
Adenocarcinoma and Adenosquamous Carcinoma, ZePT
also significantly outperformed OVSeg, achieving DSC im-
provements of 19.12% and 5.14%, respectively. These re-
sults highlight ZePT’s superior performance and its promis-
ing ability for zero-shot tumor segmentation in real-world
settings. Since these rare disease types are individually in-
frequent, it is impossible to collect them completely. There-
fore, we address the thorny problem by exploring and en-
hancing the model’s zero-shot segmentation capability.

6.4. Additional Ablation Experiments

6.4.1 Different Choices of Text Encoder.

We evaluate the performance disparities arising from the
use of various models as text encoders for generating text
embeddings. In Tab. 10, we observe that employing Clini-
calBERT [1] as the text encoder yields a slightly higher Dice
Similarity Coefficient (DSC), with improvement of 0.39%
compared to the use of the CLIP Text Encoder [50] in the
context of the real-world colon tumor dataset. Therefore,
we use the ClinicalBERT [1] as the default text encoder set-
ting for ZePT.

6.4.2 Effectiveness of Medical Domain Knowledge.

We examine the performance disparities in generating text
embeddings for each organ and tumor when using a con-
ventional prompt [36] (e.g., “a computerized tomography
of a [CLS]”) versus employing additional domain knowl-
edge automatically derived from the Large Language Model
GPT4 [44]. As shown in Tab. 10, incorporating additional
domain knowledge results in a notable enhancement in text
embedding efficacy, evidenced by an increase of 1.54%
in the DSC when using ClinicalBERT [1] as the text en-
coder, and a 1.51% increase when adopting CLIP Text



Fundamental Queries → Organ Categories Organ Label Index Advanced Queries → Tumor Categories Tumor Label Index
F1 → Spleen 1 A1 → Spleen Tumor (unseen) 26
F2 → Right Kidney 2 A2 → Kidney Tumor (seen) 27
F3 → Left Kidney 3 A3 → Kidney Cyst (unseen) 28
F4 → Gall Bladder 4 A4 → Gall Bladder Tumor (unseen) 29
F5 → Esophagus 5 A5 → Esophagus Tumor (unseen) 30
F6 → Liver 6 A6 → Liver Tumor (seen) 31
F7 → Stomach 7 A7 → Stomach Tumor (unseen) 32
F8 → Aorta 8 A8 → Aortic Tumor (unseen) 33
F9 → Postcava 9 A9 → Postcava Tumor Thrombus (unseen) 34
F10 → Portal Vein and Splenic Vein 10 A10 → Portal Vein Tumor Thrombus (unseen) 35
F11 → Pancreas 11 A11 → Pancreas Tumor (unseen) 36
F12 → Right Adrenal Gland 12 A12 → Adrenal Tumor (unseen) 37
F13 → Left Adrenal Gland 13 A13 → Adrenal Cyst (unseen) 38
F14 → Duodenum 14 A14 → Duodenal Tumor (unseen) 39
F15 → Hepatic Vessel 15 A15 → Hepatic Vessel Tumor (unseen) 40
F16 → Right Lung 16 A16 → Lung Tumor (unseen) 41
F17 → Left Lung 17 A17 → Lung Cyst (unseen) 42
F18 → Colon 18 A18 → Colon Tumor (unseen) 43
F19 → Intestine 19 A19 → Small Intestinal Neoplasm (unseen) 44
F20 → Rectum 20 A20 → Rectal Tumor (unseen) 45
F21 → Bladder 21
F22 → Prostate 22
F23 → Left Head of Femur 23
F24 → Right Head of Femur 24
F25 → Celiac Trunk 25

Table 8. The correspondence between object queries and the categories they are responsible for. Only organ categories and seen tumor
categories involve voxel-wise annotations. Queries tasked with identifying and segmenting seen organs and tumors receive supervision
from both ground truth mask annotations and query-knowledge alignment. Advanced queries responsible for identifying and segmenting
unseen tumor categories only have weak supervision from query-knowledge alignment.

Ground Truth OursZoom-In OVSeg FreeSeg MaxQuery ZegFormer zsseg SMLCT Scan

Figure 5. Qualitative visualizations on real-world colon tumor segmentation dataset. We compare ZePT with other advanced OVSS
methods and OOD detection methods in a zero-shot manner.

Encoder [50], in the context of the real-world colon tu-
mor dataset. Incorporating medical domain knowledge into

the model enhances it with advanced high-level informa-
tion and detailed visual cues. This improvement boosts the



Method
Adenocarcinoma Mucinous adenocarcinoma Signet ring cell adenocarcinoma Adenosquamous carcinoma Average

AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑
OVSeg [35] 70.06 63.71 16.51 70.01 63.89 16.44 69.93 65.73 15.66 69.80 66.03 15.59 69.95 64.84 16.05
ZePT 96.44 18.58 50.31 88.29 31.64 39.10 81.80 41.05 34.78 70.87 61.89 20.73 84.35 38.29 36.23

Table 9. Detection and segmentation performance of four colon tumor subtypes on real-world colon tumor dataset. We compare ZePT
with the second-ranked method OVSeg [35]. ZePT markedly surpasses OVSeg in terms of detection and segmentation efficacy for both
prevalent and rare types of colon tumors.

Text Encoder text sequence DSC↑
CLIP Text Encoder [50] A computerized tomography of a [CLS]. 34.33
CLIP Text Encoder [50] A computerized tomography of a [CLS]. + Knowledge 35.84
ClinicalBERT [1] A computerized tomography of a [CLS]. 34.69
ClinicalBERT [1] A computerized tomography of a [CLS]. + Knowledge 36.23

Table 10. Ablation study of the additional medical domain knowl-
edge on the real-world colon tumor segmentation dataset. We also
compare the performance disparities in adopting different models
as the text encoder (CLIP text encoder vs. ClinicalBERT).

model’s discriminative and generalization capabilities. Fur-
thermore, the medical domain knowledge, which is initially
auto-generated and then refined by medical professionals,
will also be made publicly available alongside the source
code.

6.4.3 Importance of Pretraining: One-Stage vs. Two-
Stage.

In ZePT, we initially pretrain fundamental queries on
datasets exclusively containing organ labels to achieve
multi-organ segmentation in Stage-I, subsequently fine-
tuning these queries and training advanced queries in Stage-
II. However, it is also feasible to bypass Stage-I entirely
and directly train the whole model following the training
protocol of Stage-II. The performance disparities between
one-stage and two-stage training approaches for ZePT are
summarized in Tab. 11. ZePT, when trained in two stages,
significantly outperforms its one-stage counterpart, demon-
strating improved zero-shot colon tumor segmentation. The
performance metrics show an absolute increase of at least
5.87% in AUROC, 5.74% in FPR95, and 3.04% in DSC.
Furthermore, we observed that the one-stage ZePT variant
exhibits significant instability in the initial training phases
and necessitates an extended number of epochs for conver-
gence. These phenomena are primarily due to the omis-
sion of the initial pre-training stage for fundamental queries,
which results in the model’s inadequate understanding of
anatomical structures, such as organs. As a result, the visual
prompts derived from fundamental queries are ineffective
in capturing essential information. This inefficacy hinders
advanced queries, dependent on the visual prompts, from
learning significant features, leading to a compromised fea-
ture representation that impairs the model’s overall perfor-
mance. The experimental findings highlight the necessity of

Method
Real-World Colon Tumor dataset
AUROC↑ FPR95↓ DSC↑

ZePT-One Stage (No Pretraining) 78.48 44.03 33.19
ZePT-Two Stage (With Pretraining) 84.35 38.29 36.23

Table 11. Ablation study on the impact of pretraining fundamental
queries for multi-organ segmentation in Stage-I.

Method
Real-World Colon Tumor dataset
AUROC↑ FPR95↓ DSC↑

ZePT (GroupViT [66] backbone) 80.99 41.64 34.47
ZePT (MaskFormer [10] backbone + OFG) 84.35 38.29 36.23

Table 12. Ablation study of the object-aware feature grouping
(OFG) strategy and its alternative.

a two-stage training approach for the model and reinforce
our design insight of commencing with fundamental query
training followed by its application in guiding the training
of advanced queries.

6.4.4 Object-Aware Feature Grouping vs. other alter-
natives.

The object-aware feature grouping (OFG) strategy en-
ables object queries in ZePT to acquire organ-level seman-
tics. We compare OFG with a close alternative method,
GroupViT [66], which generates a set of queries as clus-
tering centers and clusters pixels with similar semantics via
Gumbel-Softmax [24, 42] operation. As shown in Tab. 12,
adopting OFG results in an improvement of 3.36% in AU-
ROC, 3.35% in FPR95, and 1.76% in DSC, compared to the
performance achieved with GroupViT [66]. The results fur-
ther confirm the efficacy of the OFG strategy. Conversely,
the bottom-up clustering approach based on pixel seman-
tics in GroupViT [66] is unsuitable for the zero-shot tumor
segmentation (ZSTS) task. This task necessitates differen-
tiating the unseen tumor region from adjacent regions with
similar semantics. Therefore, instead of using Gumbel-
Softmax for bottom-up pixel grouping, our approach em-
ploys it to contrast visual features with specialized object
queries. This method prevents the blending of target and
adjacent disturbing regions.



6.4.5 Using Different Training Data in Stage-II.

During Stage-II of ZePT’s training process, we utilize the
LiTS [5] and KiTS [20] datasets, which include two tu-
mor categories, i.e., liver and kidney tumors, respectively.
We explore the impact of integrating additional tumor cat-
egories into Stage-II of ZePT’s training process. We ex-
periment with various tumor categories and corresponding
datasets: liver tumor (LiTS [5]), kidney tumor (KiTS [20]),
lung tumor (MSD lung task [2]), and pancreas tumor (MSD
pancreas task [2]). The efficacy of ZePT, trained across
these diverse tumor categories, are evaluated using the MSD
hepatic vessel tumor task [2] and the real-world colon tumor
dataset for zero-shot tumor segmentation performance. The
results are summarized in Tab. 13. We observed several no-
table intrinsic phenomena.

Firstly, training on images with liver tumors significantly
enhances the zero-shot segmentation performance for Hep-
atic Vessel tumors, more so than training with other tumor
categories. This improvement can be attributed to the visual
similarity between liver and hepatic vessel tumors in imag-
ing, which results in a substantially higher zero-shot seg-
mentation performance for hepatic vessel tumors following
exposure to liver tumors.

Secondly, progressively increasing the number of CT
scans and diversifying the tumor categories included in the
training process leads to a stable and gradual improvement
in the model’s zero-shot segmentation performance on un-
seen tumors.

Thirdly, the model demonstrates significantly enhanced
zero-shot segmentation capabilities for unseen tumors that
share similar imaging characteristics with the tumor types
included in the training set. This is in stark contrast to its
performance on tumors with imaging features distinctly dif-
ferent from those in the training set. This phenomenon ac-
counts for the findings in Tab. 1, where the model shows
superior zero-shot segmentation for hepatic vessel tumors
compared to others, yet demonstrates relatively lower effi-
cacy for lung and colon tumors.
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Figure 6. Hyper-Parameter Analysis of the threshold which deter-
mines the quality of mask prompts.

6.4.6 Methodological clarification of Gumbel-Softmax.

The main motivation of using Gumbel-Softmax is to make
the argmax operation in eq.(4) differentiable [58], where
argmax enables the exclusive one-hot hard assignment of
each query. This helps queries focus on distinct visual ar-
eas without overlap. We conduct experiments to exam-
ine the effectiveness of adopting one-hot hard assignment
with Gumbel-Softmax. Our findings reveal that, in com-
parison to the straightforward use of cross-attention, our
choice of incorporating one-hot hard assignment alongside
Gumbel-Softmax enhances the DSC by 4.95% on the real-
world colon tumor dataset. Also, substituting Softmax with
Gumbel-Softmax in equation (2) leads to a 2.86% decrease
in DSC on the real-world colon tumor dataset. We assume
this occurs because the soft assignment by Softmax, prior
to the hard assignment of local features, endows the queries
with a global receptive field, allowing them to benefit from
long-range contexts.

6.5. Hyper-Parameter Analysis

As described in Sec. 3.2, we derive anomaly score maps
from the affinity between visual features and fundamental
queries. Subsequently, these anomaly score maps undergo
min-max normalization, followed by the application of a
0.5 threshold to derive the mask prompts. Then the prompt-
based masked attention enables advanced queries to focus
on regions specified by the mask prompts, effectively con-
trolling the receptive field of these queries. A critical hyper-
parameter in this process, namely the threshold, is instru-
mental in determining the quality of mask prompts. We con-
duct experiments on the MSD hepatic vessel tumor task [2]
and the real-world colon tumor dataset to analyse the influ-
ence of the threshold in Fig. 6. We observed that the model
achieves optimal performance in zero-shot tumor segmenta-
tion on two datasets when the threshold is set at 0.5. Within
the threshold range of 0.4 to 0.6, the model demonstrates
high stability and robustness to threshold variations, with
no significant changes in performance. However, outside
this range, there is a marked decline in performance. This
is due to the fact that a threshold near 0 results in mini-
mal masking of visual features, hindering advanced queries
from focusing on key visual cues in the lesion area. In con-
trast, a threshold near 1 leads to excessive masking of visual
features, restricting the receptive field of advanced queries
and limiting their access to sufficient effective information,
consequently causing a marked decrease in performance.
Therefore, we adopt 0.5 as the default setting for the thresh-
old.

And another important hyper-parameter is the number of
queries. As mentioned in many previous studies [9, 10, 70],
the number of queries should be larger than the possi-
ble/useful classes in the data, which depends heavily on the
data and the task. In our task setup, for the segmentation



Tumor Categories in Dataset #Scans
MSD [2] Hepatic Vessel Tumor Real-World Colon Tumor dataset
AUROC↑ FPR95↓ DSC↑ AUROC↑ FPR95↓ DSC↑

(Liver Tumor, Kidney Tumor) 341 91.57 20.64 52.94 84.35 38.29 36.23
(Lung Tumor, Kidney Tumor) 274 86.80 33.31 40.57 82.56 40.95 35.02
(Lung Tumor, Liver Tumor) 195 90.72 23.98 50.39 78.50 44.01 33.21
(Pancreas Tumor, Liver Tumor) 413 92.58 19.40 53.83 86.82 34.36 37.95
(Pancreas Tumor, Liver Tumor, Kidney Tumor) 623 93.41 17.79 54.99 87.71 32.29 38.87
(Pancreas Tumor, Liver Tumor, Kidney Tumor, Lung Tumor) 687 94.26 17.05 55.76 89.04 30.68 39.52

Table 13. Ablation study of using different training data in Stage-II.
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Figure 7. Comparative Visualization: Zero-shot ZePT versus Fully-Supervised nnUNet [23] on real-world colon tumor segmentation
dataset. Illustrated are two cases where ZePT successfully detects and segments colon tumors, contrasting with the fully-supervised
nnUNet [23], which fails in these instances.

of 25 organs, we assign a fundamental query to each or-
gan. Taking into account the actual occurrences of diseases
associated with these organs, we use 20 advanced queries
for tumor segmentation. Consequently, in theory, our ZePT
model is capable of identifying up to 20 distinct tumor or
lesion types. This configuration is flexible and can be mod-
ified according to the unique demands of various tasks.

6.6. Comparisons between Different Settings.

Zero-Shot vs. Fully-Supervised. While ZePT demon-
strates outstanding performance in zero-shot tumor segmen-
tation, its DSC scores are still lower compared to fully
supervised models trained with labels of those unseen tu-
mors. For instance, we trained the robust fully supervised
nnUNet [23] model on the collected real-world colon tumor
segmentation dataset, achieving a average DSC of 58.30%.

This exceeds ZePT’s zero-shot colon tumor segmentation
performance, which stands at a DSC of 36.23%, by a mar-
gin of 22.07 percentage points. Despite this comparison
being somewhat unfair, it highlights the substantial room
for improvement in zero-shot learning for extremely chal-
lenging tasks like tumor segmentation. Notably, ZePT does
not fall short in all aspects against the fully supervised
nnUNet [23]. Our experiments indicate that the fully su-
pervised nnUNet [23] tends to overfit the training data,
resulting in missed detections and false positives in cer-
tain cases, particularly with rare tumor types. In contrast,
ZePT consistently and accurately identifies and segments
colon tumors in these cases. Fig. 7 illustrates two cases in
which ZePT successfully segments colon tumors, whereas
the fully supervised nnUNet [23] produces false positives
and negatives. This comparison highlights the substantial
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Figure 8. Failure Case Visualizations. Displayed are two examples where both zero-shot ZePT and fully-supervised nnUNet [23] struggle
due to the vague and indistinct characteristics of tumor areas.

Method
Task03 Liver Task06 Lung Tumor Task07 Pancreas Task08 Hepatic Vessel Task09 Spleen Task10 Colon Tumor

Organ DSC↑ Tumor DSC↑ DSC↑ Organ DSC↑ Tumor DSC↑ Organ DSC↑ Tumor DSC↑ DSC↑ DSC↑
nnUNet [23] 94.57 58.22 66.57 80.06 50.45 63.29 68.20 96.53 50.07
Swin UNETR [56] 94.14 57.93 68.90 80.18 52.54 62.37 68.63 95.86 50.55
Universal [36] 96.53 71.92 67.11 82.75 60.83 62.64 69.47 96.75 62.15
ZePT (fully-supervised) 97.22 72.95 69.07 86.23 62.10 64.39 70.65 97.04 64.87

Table 14. Benchmark on MSD validation dataset. We compare the fully-supervised ZePT with leading baselines, including nnUNet [23],
Swin UNETR [56], and Universal [36] (previously ranked first on the MSD leaderboard), using 5-fold cross-validation on the MSD dataset.
The fully-supervised ZePT demonstrated superior segmentation performance overall, particularly in segmenting the pancreas (+3.48%),
pancreatic tumors (+1.27%), and colon tumors (+2.72%).

and promising potential of zero-shot learning to address the
long-tail distribution challenge in medical imaging.

Fig. 8 displays several failure cases from the real-world
colon tumor segmentation dataset, characterized by exceed-
ingly vague and indistinct tumor areas. In these instances,
ZePT was unable to detect the tumors. It is important to
note, however, that the fully supervised nnUNet [23] model
also struggled with these particularly challenging cases.

Fully-Supervised ZePT. Additionally, we trained a fully-
supervised version of ZePT to further evaluate its segmen-
tation performance on seen organs and tumors. We follow
the settings in [36] and train a strong ZePT model on multi-
ple public datasets. We then conducted a comparative anal-
ysis of the fully-supervised ZePT against established base-
lines, including nnUNet [23], Swin UNETR [56], and Uni-
versal [36]. Detailed comparisons based on 5-fold cross-
validation on the MSD dataset are presented in Tab. 14.

The fully-supervised ZePT achieves overall better segmen-
tation performance and offers substantial improvement in
the tasks of segmenting pancreas (+3.48%), pancreatic tu-
mors (+1.27%), and colon tumors (+2.72%). This further
demonstrates the novelty and superiority of ZePT’s network
architecture and training strategy. Notably, ZePT enhances
segmentation performance significantly for seen organs and
tumors, outperforming previous fully-supervised methods.
Furthermore, it exhibits a remarkable ability for zero-shot
tumor segmentation, a feature absent in traditional fully-
supervised models. These strengths emphasize the impor-
tance and potential of ZePT.

6.7. Differences Between ZePT and Existing Zero-
Shot Medical Image Segmentation Methods

Research on zero-shot segmentation models is scarcely ex-
plored within the medical imaging domain, primarily due



to the intricacies involved in medical image segmentation
tasks. Early attempts in this area include [4, 41]. Ma et
al. [41] proposed a zero-shot CNN model which utilizes
two adjacent slices, instead of the target slice, as the input
data of deep neural network to predict the brain tumor area
in the target slice. This method has the potential to reduce
the annotation workload, allowing doctors to only label a
subset of the slices. Nevertheless, it requires tumor annota-
tions for training and is capable of segmenting targets only
when adjacent slices and their labels are supplied during the
training process. Bian et al. [4] introduced an annotation-
efficient approach based on zero-shot learning for medical
image segmentation. This method leverages the informa-
tion in data of an existing image modality with detailed an-
notations and transfer the learned semantics to the target
segmentation task with a new image modality. Therefore,
their approach more closely resembles Domain Adaptation.
These existing methods have yet been definitively proven to
have the capability to segment multiple tumors in a strictly
”zero-shot” manner. To the best of our knowledge, ZePT
represents the first method capable of achieving zero-shot
pan-tumor segmentation.

6.8. Discussions on Future Works.

Improving Zero-Shot Tumor Segmentation Perfor-
mance. The analysis of data from Tab. 1 and Tab. 13 in-
dicates that the model excels in zero-shot segmentation for
unseen tumor categories that exhibit visual features simi-
lar to those of seen tumor categories. This suggests that
simulating lesion features akin to unseen tumor categories
during training, and directing the model to emphasize these
features, could markedly improve its zero-shot segmenta-
tion capabilities. Consequently, future studies could inves-
tigate the use of diffusion-based models for simulating di-
verse tumor lesions’ visual features and incorporating them
into the training regime, which would potentially augment
the model’s effectiveness in zero-shot tumor segmentation.
Adaptation to Diverse Imaging Modalities. This paper
primarily explores the zero-shot tumor segmentation chal-
lenge, without delving into addressing the differences be-
tween various imaging modalities. Consequently, in line
with prior research [8, 36] on creating universal segmenta-
tion models for various organs and tumors, our experiments
and analyses were solely conducted using CT images. How-
ever, our approach is, in theory, adaptable and could poten-
tially be applied to other 3D medical imaging modalities,
including MRI and ultrasound. We aim to investigate this
potential in future studies.
Expanding Data Collection to Encompass a Broader
Spectrum of Tumor Types for Evaluation. In our re-
search, we assembled a dataset of 388 patients with colon
tumors and utilized most of the publicly available tumor
datasets to develop and evaluate the ZePT model’s zero-shot

performance. As previously noted, ZePT theoretically pos-
sesses the ability to segment a diverse array of unseen tumor
types, beyond the scope of currently available datasets. To
this end, we are actively compiling a more comprehensive
dataset that includes a wider variety of tumor types, aiming
to further assess ZePT’s capabilities. Although the perva-
sive issue of data scarcity continues to challenge medical
AI model development, ZePT represents a significant stride
in overcoming this hurdle through zero-shot learning.


