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Figure S1. Distribution of AU intensities in DISFA. (a) Including
samples with at least one non-zero AU intensity. (b) Whole DISFA
dataset. As shown in (a), the distribution remains highly imbalanced
after filtering out samples with zero intensities for all AUs.

S1. DISFA Dataset

The DISFA dataset [13, 14] is the only public dataset that
contains intensity labels for 12 action units (AUs). It serves
as the benchmark for AU intensity estimation tasks [15, 19].
Current AU intensity manipulation methods [11, 16, 21]
often rely on large public datasets with predicted AU intensi-
ties as ground truth. This preference arises due to DISFA’s
limitations: it comprises only 27 subjects, notably fewer
than the extensive subject pools of 337, 98, and over 1000
subjects used in these methods [11, 16, 21], respectively. Ad-
ditionally, the intensity distribution within DISFA is highly
imbalanced, as depicted in Fig. S1. Nevertheless, to the best
of our knowledge, we are the first work to leverage such im-
balanced datasets with limited subject counts for achieving
AU intensity manipulation.

S2. Level-wise Architecture in AUEditNet

Supplementing the description of fitting our proposed AUEd-
itNet to the multi-level structure of latent vectors in W+
space [1] introduced in Sec. 3.3, here, we delve into the
multi-level architecture and the encoding-decoding process
for labels in AUEditNet.

S2.1. Multi-Level Architecture of AUEditNet

Given a source image Ig,.., e4e [20] encodes it into the
W latent space, producing corresponding latent vectors
Were € R18%512_ These latent vectors can be used directly
in StyleGAN2 [9] for high-quality image generation. The
first dimension represents the level index, denoted by j in the
main paper. Rather than reintegrating disentangled level-wise
features in W™ using a single editing module, we opt for
multiple independent editing modules { P7(-) | j € [1, M]},

each responsible for editing a specific level of the latent
vectors, shown in Fig. S2. Here, M denotes the number of
levels we aim to edit, set to 11 in our task. The rest of latent
vectors maintain invariant during editing.

S2.2. Encoding and Decoding of Labels

Various works explored incorporating input conditions into
multi-level latent vectors within the W space for editing
purposes. StyleFlow [2] empirically found optimal level in-
dex ranges linked to specific facial attributes, like expression
(4 — 5), yaw (0 — 3), and gender (0 — 7). However, their
focus was primarily on smiling expressions, which didn’t
satisfy our requirements for editing multiple AUs. Moreover,
searching such optimal index ranges demands substantial
datasets. ReDirTrans [8] proposed to apply the same condi-
tions universally across levels and use error-based weights
to determine each level’s contribution to the target facial
attribute. However, they assumed that their aimed attribute
(gaze directions) could be estimated from a single level of
the latent vectors in W, which might not suit other attribute
manipulations.

Given these limitations, instead of focusing on which
level (or levels) controls the target attribute, we propose
encoding labels to align with the multi-level structure. This
approach avoids mixing multiple facial attribute labels when
inputted into individual levels. Specifically, we propose to
first encode the target labels of multiple facial attributes
( (cyrrat,,) | 1 € [1,N]}) into multi-level embeddings
for fitting the multi-level structure. Then, we feed the j-
th level embedding ({ (¢;7.,az?) | 1 € [1,N]}) into the
corresponding editing module P to perform editing. Given
the level-wise estimated label embeddings from the source
image, we decode them back to the original label space to
get the estimated source labels { (¢4, a’,.) | 1 € [1,N] }.
Eq. 4 supervises this training process. The loss values for
level-wise label embeddings and final decoded labels are
computed independently to prevent the label encoder from
learning the same mapping as the input labels. On the other
hand, due to the highly disentangled nature of the latent
vectors in the W space across different levels, predicting
all 12 AU intensities from each level of the latent vectors can
be challenging. Thus, an identical mapping by ¥.,,. could
result in increased loss.

The proposed encoding-decoding pipeline for labels
doesn’t restrict the estimation of aimed attributes to a single
level of latent vectors. Fig. S2 presents the overall multi-level
architecture of AUEditNet. The encoder-decoder pair, ©ey,c
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Figure S2. Multi-level architecture of AUEditNet. We only focus on editing the first 11 levels of latent vectors in W™ . Each level has one
corresponding editing module 77, whose detailed structure is described in Fig. 1. Given a sequence of target labels for 12 AUs, we first use
U, to encode them into embeddings and feed these embeddings into each 77 for editing purposes. Meanwhile, each 77 estimates the
label embeddings from the source latent vectors. Subsequently, we use V4. to decode these estimated embeddings back to the label space
and compare them with the actual source labels for supervision. For simplicity, we only include one target attribute with the index <. In the
real implementation, the input target labels should include labels for all 12 AUs. We only include the source branch in this figure for better
description. The pipeline is the same and the weights are shared in the farget branch.

Manipulation ID Image
Accuracy Preservation Similarity
ICCT MSE | Distance | L2] LPIPS|
W/O () 0.617 0.288 0.471 0.026 0.173
W/y(-)  0.628  0.283 0.468 0.026 0.174

Table S1. Ablation Study on encoding-decoding processes for la-
bels. 1 () represents the pair of encoder ¥ern. and decoder 1 gec.

and 1) 4., are trained based on the Label Loss introduced in
Sec. 3.4. Table S1 presents the comparison with and without
the label encoding-decoding processes in AUEditNet.

S3. AU Intensity Estimator

In our work, pretrained AU intensity estimators are required
at two stages: when utilizing the Pretrained Function Loss in
Sec. 3.4 during training and when evaluating manipulation
performance quantitatively during inference.

S3.1. Network Structure

We utilize a Siamese network for AU intensity estimation,
shown in Fig. S3. The input is a pair of images from the
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Figure S3. Structure of the AU intensity estimator. This Siamese
network takes a pair of images from the same subject as inputs
and estimates the difference of AU intensities between these two
images (the target and anchor images). We use convolutional neural
network (CNN) to extract features. After concatenating two fea-
tures, we use fully-connected network (FCN) to regress the final
output.

same subject. One is viewed as the target image, and the
other one is viewed as the anchor image. The output is the
difference of AU intensities between the target image and



Method AUl AU2 AU4 AUS5 AU6

AU9 AUI2 AU15 AUI7 AU20 AU25 AU26 Avg

AUEditNet (Real) .848 559 874 .600 .577
AUEditNet (Syn)  .853 551 .885 .600 .586

230 .890 276 .669 S11 950 548  .628
235 888 283 .685 514 948 533 .631

AUEditNet (Real) .191 445 309 .029 492
AUEditNet (Syn)  .186 452 291 .030 .483

MSE| ICC

579 228 .080 .188 322 169 367 283
574 230 .080 181 321 A71 377 281

Table S2. Comparison of AU intensity manipulation performance when using different types of anchor images. ‘(Syn)’ means using synthetic
face images with deactivating all AUs as the anchor image. ‘(Real)’ means using real images with zero intensities of all AUs from the test
subject as the anchor image. The results under the ‘Real’ case are copied from Table 1.

Figure S4. Comparison of eyebrow positions and shapes on the
DISFA dataset. All of these four images have deactivated (zero-
intensity) AU 1 (Inner Brow Raiser), AU 2 (Outer Brow Raiser) and
AU 4 (Brow Lowerer). We can observe that the different eyebrow
positions and shapes could affect the performance given a unified
AU intensity estimator.

the anchor image. This design could help to reduce personal
facial attributes’ influences, such as eyebrow positions and
shapes affecting the eyebrow-related AU movements, illus-
trated in Fig. S4. If all AU intensities in the anchor image
are at zero, the output represents the absolute intensities of
AUs in the target image.

S3.2. Estimator in Training

During training, the pretrained convolutional part of VGG-
16 [18] serves as the backbone in the AU intensity estimator,
trained on the DISFA training subset. It functions as Fj,,. to
detect AU intensities in synthesized images during AUEdit-
Net’s training. The anchor image is randomly chosen from
the same subject’s data with all AUs deactivated (zero inten-

sity).
S3.3. Estimator in Inference

During testing, we use another external AU intensity esti-
mator to quantify the manipulation performance, which is
unseen during training. We use the pretrained convolutional
part of ResNet-50 [7] as the backbone to build the AU inten-
sity estimator H.;, trained on the DISFA training subset.
When evaluating the performance of AUEditNet, the tar-
get image for the AU intensity estimator is the generated
image with the provided target conditions. The anchor image
can be either a real image with zero intensities of all AUs
from the test subject or the generated one with deactivating
all AUs. Table S2 presents the comparison using real or syn-
thetic images with deactivated AUs as the anchor images.

When using synthetic images as the anchor images, the final
performance is further improved even if the external AU
intensity estimator H.g; is only trained with the real images
in the training subset. Additionally, it proves AUEditNet’s ef-
fectiveness in AU intensity manipulation when deactivating
all AUs.

S4. Smile Attribute Manipulation

To further validate AUEditNet’s effectiveness, we assess
the facial expression editing performance by manipulating
intensities over some AUs. We modify the intensities of AU
6 (Cheek Raiser) and AU 12 (Lip Corner Puller) across eight
levels (shown in Fig. S5) simultaneously to enable smile
intensity editing [6]. Following the evaluation proposed in
[3], we utilize a pretrained face recognition model [5] for
identity preservation assessment and utilize Face++ [4] to
evaluate the smile attribute intensity values in generated
images.

S5. Data Annotation

In comparison to the abundance of publicly available datasets
containing various expressions, datasets with detailed AU
intensity labels are relatively scarce. Introducing new ex-
perts for AU intensity annotation could lead to subjective
discrepancies. To address this, we have devised an anno-
tation pipeline while maintaining the architecture of the
editing network. During the annotation process, we keep
all the network parameters fixed and solely iterate the condi-
tions until the generated image closely resembles the input
image. Evaluation criteria consist of pixel-wise loss and a
pretrained function loss. Visualized results are used to as-
sess performance by comparing them with the input images,
making the process more accessible to data annotators who
do not require expertise in AU intensity, but rather focus
on comparing image similarity. This pipeline ensures that
the provided target conditions fully control AU intensities
in the final image, supported by intermediate results with
deactivating all AUs and the final generation is based on
this intermediate result. Fig. 2 shows the intermediate results
with all intensity values set to zero, alongside final generated
images with target AU intensities. Given the multitude of
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Figure S5. Smile attribute manipulation achieved by the AU intensity manipulation. asmie denotes the target smile intensity, ranged [0, 1]
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Figure S6. AU intensity estimation performance based on the data
augmentation from the BU-4DFE dataset annotated via AUEdit-
Net. ‘Real Aug’ denotes the augmentation performance with real
images from BU-4DFE. With new information (new images from
BU-4DFE) included in the AU intensity estimation task, the final
estimation performance is further improved.

intensity combinations across 12 AUs with six ordinal levels
(let alone float intensities), we iteratively adjust one AU’s
intensity with six levels, selecting the best level based on

loss values before moving to the next AU. We loop the above
pipeline with each image twice and it takes around 12s on
a single NVIDIA RTX 3090. To prove the effectiveness of
this annotation pipeline, we utilize the same augmentation
pipeline, introduced in Sec. ??. However, instead of using
synthetic images, we utilize the real images from BU-4DFE
[22] accompanied with the estimated AU intensities for train-
ing an AU intensity estimator. Fig. S6 presents the results
when we augmented the raw data with the same number
of real images and estimated annotations. With including
new information instead of synthetic images generated from
the same training samples, the estimator’s performance is
further improved. This pipeline offers a pathway for con-
ditional synthesis networks to establish pairs between real
images and pseudo regressed labels. Furthermore, it offers
the possibility of a manual evaluation step, which does not
demand specialized expertise, to validate the accuracy of the
pseudo labels.

S6. State-of-the-Art Baselines

We reproduce two StyleGAN-based facial attribute editing
methods: ReDirTrans [8] and DeltaEdit [12] to achieve AU
intensity manipulation.



ReDirTrans. Jin et al. [8] proposed ReDirTrans, focus-
ing on redirecting gaze directions and head orientations
based on the provided yaw and pitch angles. They edited the
gaze-related and head-related embeddings through rotation
matrices built by the target conditions to make the whole
transformation process interpretable. We adapt this method,
using translation processes scaled with aimed AU intensities
to replace the rotation processes while maintaining other
modules unchanged.

DeltaEdit. Lyu et al. [12] proposed DeltaEdit, which is a
text-driven facial attribute editing method. Instead of using
interpretable editing processes as ReDirTrans did, they fed
both editing conditions and source latent vectors into a net-
work to estimate the editing directions for desired attribute
editing. Because they utilized the pretrained CLIP [17] to ex-
tract image features, they didn’t require any labels for facial
attributes. In our case, we replace the text prompts with AU
intensities as conditions. We use an extra fully-connected
network (FCN) to bridge the dimension gap between text
features from CLIP and AU intensities. During training, we
employ a pair of images from the same subject as input in-
stead of different subjects as DeltaEdit did because we no
longer utilized the CLIP image encoder, which has the ability
to capture different identity information. Instead, we use the
ground truth of AU intensities as the input during training.

S7. Training Details

To expedite training and mitigate the influence of numerous
samples with zero intensities of all AUs, shown in Fig. S1,
we always use one sample with at least one non-zero AU
intensity as the source image. The target and random images
are chosen randomly from the rest data without any special
requirements. We utilize the cycle pipeline [23] to input the
generated target image with source image conditions back
to the network to achieve cycled image reconstruction.

We opt for a batch size of 2, utilizing Adam optimizer
[10] with default momentum values (3; = 0.9, B3 = 0.999).
The training process, consuming around 18,123 MiB on a
single NVIDIA RTX 3090, iterates for 30,000 iterations.
The loss weights in Eq. 4 are setas Ag = 8, A\p = 1, A\p =
125, A\;p = 20, A, = 20.
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