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Abstract This appendix provides additional discus-
sions (Appendix A), implementation details (Appendix B),
several additional experiments (Appendix C), additional
qualitative analysis (Appendix D), and details of quantita-
tive evaluations (Appendix E).

A. Additional Discussions

A.1. Comparison of Chat-UniVi and Other Multi-
modal Methods

Existing methods [8, 14, 15, 22, 32] often focus exclusively
on either image or video inputs. Recently, there have also
been some methods [1, 6, 27] that support both images and
videos, and they can be broadly divided into two classes.

• Q-former based methods. The first class of methods
uses a query transformer to extract a fixed number of to-
kens for each image and video. These methods are ex-
emplified by Flamingo [1], OpenFlamingo [3], and Ot-
ter [12]. However, videos vary in length, posing a chal-
lenge for these methods, as they extract a fixed number of
visual tokens from each video, limiting their ability to ef-
fectively capture temporal comprehension. Human evalu-
ation results also substantiate that these methods struggle
to strike a balance between image and video comprehen-
sion.

• Multi-encoder methods. The second category of meth-
ods employs separate pre-trained image and video en-
coders to process images and videos independently.
Prominent examples of this approach include X-LLM [6]
and NExT-GPT [27]. However, these methods intro-
duce redundancy within the model and present difficul-
ties when trained jointly. Most importantly, this approach
does not leverage the advantages of joint training with
both image and video data. Consequently, they do not
align with our primary objective of developing a unified
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Type Methods Variable Unified Benefit from
Length Features Visual Encoder Joint Training

Q-former based methods Flamingo
✘ ✔ –OpenFlamingo, Otter

Multi-encoder methods X-LLM, NExT-GPT – ✘ ✘

Unified methods Chat-UniVi ✔ ✔ ✔

Table A. Comparison with other methods. “✘” denotes that the model does not have this property. “✔” denotes that the model has this
property. “–” indicates a temporary lack of experimental evidence.

Methods Parameter-free Video Input Image Understanding

Conversation Detail Reason All

Ma et al. [17] ✘ ✘ 71.8 60.9 91.6 75.0

Chat-UniVi ✔ ✔ 84.1 74.2 93.7 84.2

Table B. Comparison of Chat-UniVi and another token clustering method. “✘” denotes that the model does not have this property.
“✔” denotes that the model has this property.

vision-language model.
In contrast to the previous works, Chat-UniVi uniformly

represents images and videos using multi-scale dynamic vi-
sual tokens. The proposed Chat-UniVi has two compelling
advantages:
• Variable length video features. In Chat-UniVi, the num-

ber of temporal visual clusters is determined proportion-
ally based on the number of input video frames. In con-
trast to the Q-former based methods, Chat-UniVi allo-
cates a greater number of visual tokens to longer videos.
Therefore, our method is better suited for variable-length
video understanding.

• Unified visual encoder. Chat-UniVi employs a shared
visual encoder to consistently process both images and
videos. In contrast to multi-encoder methods, our method
eliminates the need for introducing redundant parameters
and streamlines the training process.

• Benefit from joint training. Due to the unified represen-
tation framework for both images and videos, Chat-UniVi
can be trained on mixed datasets that include both images
and videos. This allows for direct application to tasks in-
volving both images and videos. Most importantly, we
find that this joint training strategy can simultaneously
enhance the model’s understanding of both images and
videos.
In Tab. A, we show the comparison of Chat-UniVi and

other methods. For Q-former based methods, the advan-
tages of joint training are not shown, and even the perfor-
mance of the model may affect each other when multiple
datasets are mixed [1]. However, the potential to benefit
from joint training cannot be ruled out. In addition, the
multi-encoder method can also select a video encoder that

can encode dynamic length features.

A.2. Comparison of Chat-UniVi and Other Cluster-
ing Transformer Methods

There have also been recent methods [11, 17, 28, 29] to
explore the role of token clustering within the transformer
framework. However, none of these methods can be di-
rectly extended to video, and additional parameters need to
be trained. We summarize the advantages of our method as
follows:
• Supporting video input. In contrast to other methods,

Chat-UniVi extends the tokens clustering method to in-
corporate video inputs, achieving the integration of im-
age and video representations for the first time. Our work
is the first to demonstrate that this unified representation
can reconcile the intricate spatial details of images with
the broader temporal understanding required for videos.

• Without parameters. Our clustering method is
parameter-free and therefore requires no training. In-
terestingly, we find that this parameter-free clustering
method serves as the linchpin to the success of our model.
As shown in Tab. B, the performance of the clustering
method with training parameters is significantly inferior
to the parameter-free clustering method we propose. We
attribute this phenomenon to the gradient instability in
multimodal conversation training, which hinders the con-
vergence of parameterized methods.

A.3. Runtime and Memory Complexity

As shown in Tab. C, the time and memory costs of our
clustering algorithm are negligible compared to those of the
large language model.



Methods Time Complexity Image Inference Video Inference

Spatial Temporal Merging (s) All (s) Memory (M) Merging (s) All (s) Memory (M)

LLaVA - - 0 2.3116 15673 ✘ ✘ ✘
Ours O(L2D) O(M2D) 0.0027 2.2722 15443 0.0174 4.4040 16533

Table C. Runtime and memory complexity analysis. L, D, and M denote the number of vanilla visual tokens, the feature dimension, the
frame length, respectively. “✘” denotes that the method does not have this property.

Datasets Image Inputs Video Inputs Multi-turn Number of
Conversations Conversations

Multimodal Pre-training Stage
CC3M-595K ✔ ✘ ✘ 595K
COCO ✔ ✘ ✘ 956K

Joint Instruction Tuning Stage
LLaVA-instruct-150K ✔ ✘ ✔ 150K
MIMIC-IT-399K‡ ✔ ✘ ✘ 399K
Video-ChatGPT-instruct ✘ ✔ ✘ 100K

Table D. Description of training data. “✘” denotes that the dataset does not have this property. “✔” denotes that the dataset has this
property. “‡” represents the dataset filtered from MIMIC-IT, containing exclusively image data. In order to further filter the training data,
we also delete the duplicate data in LLaVA-instruct-150K and MIMIC-IT.

A.4. Limitations and Future Work

In this section, we delineate the limitations of our work and
outline avenues for future research.
The Enduring Impact of Large Language Models. Our
method leverages the strength of pre-trained Large Lan-
guage Models, and as a consequence, also inherits their vul-
nerabilities.
• Hallucination. While our experiments demonstrate the

effectiveness of our method in addressing hallucinations,
it is important to acknowledge that the issue of halluci-
nations in LLMs remains a challenge yet to be fully re-
solved. The phenomenon of illusory responses in LLMs
can result in unsupported conjectures during open mul-
timodal conversations, and addressing this issue has the
potential to significantly expedite advancements in the
field. For a more in-depth exploration of common weak-
nesses observed in large LLMs, please refer to Brown
et al. [4], Rae et al. [21].

• Long sequence processing. Transformer-based language
models often exhibit suboptimal generalization when
confronted with test sequences considerably longer than
their training data [19]. This becomes particularly evident
in multi-turn conversations, where the model may exhibit
forgetfulness of prior conversational context, resulting in
erroneous responses. Simultaneously, we find a decline
in model performance when multiple videos are inputted,
which could also be attributed to constraints associated
with sequence length.

• Prompt sensitivity. In-context learning has demonstrated

disconcerting sensitivity to various aspects of demonstra-
tions, including prompt formats [31]. Notably, different
prompt formats can yield entirely contradictory output re-
sults. Finding a solution to this issue holds the potential
to greatly accelerate progress in the field.

Natural Language Output. Natural language serves as
a robust and adaptable input/output interface for describ-
ing visual tasks to the model, facilitating the generation of
outputs, or estimating conditional probabilities for potential
outcomes. However, it may prove to be a less convenient
interface for tasks that require conditioning on or predicting
more structured outputs, such as bounding boxes, as well as
for generating dense pixel predictions. Besides, the flexibil-
ity of the natural language output also makes it difficult to
evaluate the performance of the model.

More Modalities. Future work can explore alternative
modalities, such as audio, in addition to visual inputs. The
incorporation of multiple modalities holds the promise of
broadening the spectrum of tasks that the model can ad-
dress, and it has the potential to enhance their performance
by leveraging synergies among these various modalities.
For example, contemplating audio information alongside
video processing can significantly augment the video un-
derstanding of the model.



Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency .

LoRA 76.1 68.6 82.4 75.8 52.8 55.0 63.8 51.6 53.8

Full fine-tuning 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

Table E. Comparison between the LoRA and full fine-tuning. “Detail” denotes the “Detail Description” in the context of image un-
derstanding or “Detail Orientation” in the context of video understanding. For image understanding, “Reason” denotes the “Complex
Reasoning”. For video understanding, “Correct”, “Context”, and “Temporal” stand for “Correctness of Information”, “Contextual Under-
standing”, and “Temporal Understanding”, respectively.

Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency

EVA-CLIP 80.0 74.7 91.2 82.1 57.2 58.8 67.8 55.2 54.6

Openai-CLIP 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

Table F. Comparison between the EVA CLIP and the Openai CLIP. We choose EVA-CLIP (ViT-G), which has a similar number of
parameters as Openai-CLIP (ViT-L/14), for the experiment.

Methods Image Understanding Video Understanding

Conversation Detail Reason All Correct Detail Context Temporal Consistency

Single-scale 70.5 63.4 88.3 74.2 54.6 56.4 65.8 52.8 52.2

Multi-scale 84.1 74.2 93.7 84.2 57.8 58.2 69.2 57.8 56.2

Table G. Ablation study about the multi-scale representation. These results provide evidence for the benefits of employing a multi-scale
representation in multimodal large language models.

B. Implementation Details

B.1. Data Details

For the multimodal pre-training stage, we utilize the
image-caption pairs from various datasets, including
COCO [7] and CC3M-595K screened from CC3M [23] by
LLaVA [16]. All input images are resized to 224 × 224.
For the joint instruction tuning stage, we incorporate mul-
timodal instruction data from multiple sources: (i) multi-
modal in-context instruction datasets, such as MIMIC-IT [2,
10, 12], (ii) visual instruction datasets, such as LLaVA, (iii)
video instruction data from Video-ChatGPT [18]. In order
to further filter the training data, we delete the duplicate
data in LLaVA-instruct-150K and MIMIC-IT, and delete
the video data in MIMIC-IT. This dataset is a composite of
multi-turn conversations and single-turn conversations pre-
sented in a conversational format, alongside single images,
multiple images, and videos as visual input. For each video,
we select 64 frames as input for the model. All input images
or frames are resized to 224 × 224. We provide a detailed
description of the training data in Tab. D.

B.2. Model Settings

Following previous works [16], we adopt the vision encoder
of CLIP (ViT-L/14) [20] as the visual foundation model. We
chose an instruction-tuned variant of LLaMA2 [26], i.e., Vi-
cuna [25], as our language foundation model. Specifically,
we utilize the Vicuna-v1.5 model, comprised of 7B param-
eters.

B.3. Training Hyperparameters

For the multimodal pre-training stage, we pre-train Chat-
UniVi for one epoch with a batch size of 128, employing
the AdamW optimizer with a cosine schedule. The learning
rate is set to 2e-3, and the warm-up rate is 0.03. For the joint
instruction tuning stage, we train Chat-UniVi for 2 epochs
with a batch size of 128, and the learning rate is set to 2e-5,
employing the AdamW optimizer with a cosine schedule.
The warm-up rate is set to 0.03.

B.4. ScienceQA Fine-tuning Settings

We start with a pre-trained model to fine-tune. We fine-tune
the model for 9 epochs with a batch size of 32, employing
the AdamW optimizer with a cosine schedule. The learning
rate is set to 2e-5, and the warm-up rate is 0.03.



POPE Methods LLM Size Accuracy Precision Recall F1-Score Yes

Random Single-scale 7B 73.88 67.03 97.06 79.30 74.63
Multi-scale 7B 85.19 83.59 88.66 86.05 54.67

Popular Single-scale 7B 56.36 53.50 97.20 69.01 90.83
Multi-scale 7B 69.50 64.10 88.60 74.39 69.10

Adversarial Single-scale 7B 55.63 53.07 97.26 68.67 91.63
Multi-scale 7B 64.97 60.23 88.06 71.54 73.10

Table H. Effect of the multi-scale representation on object hallucination. “Yes” represents the proportion of positive answers that the
model outputs.

Methods
Multimodal Pre-training Instruction Tuning Image Understanding

POPE-R Video
Datasets Datasets Conv Detail Reason All Inputs

LLaVA CC3M-595K LLaVA-instruct-150K 82.3 70.2 87.9 80.4 66.83 ✘
Chat-UniVi 82.9 68.8 89.8 80.7 82.26 ✘

LLaVA CC3M-595K, LLaVA-instruct-150K 82.7 68.8 88.8 80.8 72.02 ✘
Chat-UniVi COCO 83.3 72.6 89.0 81.5 82.33 ✘

LLaVA CC3M-595K, LLaVA-instruct-150K, 78.8 70.2 91.8 80.4 74.53 ✘
Chat-UniVi COCO MIMIC-IT-399K 84.0 69.3 89.3 81.5 83.53 ✘

Chat-UniVi CC3M-595K, LLaVA-instruct-150K, MIMIC-IT-399K, 84.1 74.2 93.7 84.2 85.19 ✔w/ video data COCO Video-ChatGPT-instruct

Table I. Ablation of structure and training data. “✘” denotes that the method does not have this property. “✔” denotes that the method
has this property.

C. Additional Experiments

C.1. Comparison between the LoRA and Full Fine-
tuning

When the number of model parameters is too large, full
fine-tuning of retraining all model parameters becomes ex-
pensive, so many recent methods freeze most of the model
parameters and train the model with LoRA [9]. We pro-
vide the results of the comparison between the LoRA and
full fine-tuning in Tab. E. We find that LoRA can achieve
competitive performance with full fine-tuning while saving
more than half the GPU memory required for training. Fu-
ture work can use LoRA to extend our method on larger
LLMs and vision encoders to achieve better performance.

C.2. Analysis of the Vision Encoder

EVA-CLIP [24] is a recently developed multimodal model
with performance comparable to Openai-CLIP [20]. We
provide the results of the comparison between EVA-CLIP
and Openai-CLIP in Tab. F. We find that the performance
of EVA-CLIP is comparable to that of Openai-CLIP when
the number of parameters is equal. However, EVA-CLIP of-
fers a larger version of the model with a parameter count of
1.8B, so we think it might be better to adopt a larger EVA-
CLIP than Openai-CLIP when using larger LLMs.

C.3. Effect of the Multi-scale Representation

To investigate the impact of the multi-scale representa-
tion of our method, we provide the ablation results in
Tab. G. Multi-scale representation improves both image un-
derstanding and video understanding of the model. These
results provide evidence for the benefits of employing a
multi-scale representation in multimodal large language
models.

C.4. Effect of the Multi-scale Representation on Ob-
ject Hallucination

Chat-UniVi, as a 7B model, even outperforms the 13B
model, e.g., MiniGPT-4, in the object hallucination evalu-
ation. We attribute this success to the multi-scale represen-
tation that equips our method to perceive both high-level se-
mantic concepts and low-level visual appearance. In Tab. H,
we show the results of ablation experiments on object hal-
lucination evaluation for the multi-scale representation. We
find that multi-scale representation improves the ability to
resist hallucinations. Therefore, multi-scale representation
is beneficial for multimodal LLMs.

C.5. Ablation of Training Data

We provide comparisons of our method with LLaVA un-
der different conditions in Tab. I. Our method achieves bet-
ter performance than LLaVA, which we explain in the fol-



POPE Methods LLM Size Accuracy Precision Recall F1-Score Yes

Random

LLaVA 13B 64.12 59.38 95.99 73.38 83.26
MiniGPT-4 13B 79.67 78.24 82.20 80.17 52.53
InstructBLIP 13B 88.57 84.09 95.13 89.27 56.57
MultiModal-GPT 7B 50.10 50.05 100.00 66.71 99.90
mPLUG-Owl 7B 53.97 52.07 99.60 68.39 95.63
LLaVA† 7B 72.16 78.22 76.29 78.22 76.29
Chat-UniVi 7B 85.19 83.59 88.66 86.05 54.67

Popular

LLaVA 13B 63.90 58.46 95.86 72.63 81.93
MiniGPT-4 13B 69.73 65.86 81.93 73.02 62.20
InstructBLIP 13B 82.77 76.27 95.13 84.66 62.37
MultiModal-GPT 7B 50.00 50.00 100.00 66.67 100.00
mPLUG-Owl 7B 50.90 50.46 99.40 66.94 98.57
LLaVA† 7B 61.37 56.63 97.00 71.52 85.63
Chat-UniVi 7B 69.50 64.10 88.60 74.39 69.10

Adversarial

LLaVA 13B 58.91 55.11 95.72 69.95 86.76
MiniGPT-4 13B 65.17 61.19 82.93 70.42 67.77
InstructBLIP 13B 72.10 65.13 95.13 77.32 73.03
MultiModal-GPT 7B 50.00 50.00 100.00 66.67 100.00
mPLUG-Owl 7B 50.67 50.34 99.33 66.82 98.67
LLaVA† 7B 58.67 54.90 97.00 70.12 88.33
Chat-UniVi 7B 64.97 60.23 88.06 71.54 73.10

Table J. Detailed results on object hallucination evaluation. “†” denotes our own re-implementation of LLaVA under our training
settings (excluding video data) for a fair comparison.

lowing two aspects. Multi-scale Representation. In con-
trast to LLaVA, which focuses on low-level visual features,
our method perceives both high-level semantic concepts
and low-level visual details by multi-scale representation.
Therefore, our method outperforms LLaVA in conversation,
reasoning, and hallucinations. Scalability. Our framework
supports video input, and by fine-tuning with high-quality
video instruction data, the visual capabilities of our mod-
els have been significantly enhanced, especially in terms of
detailed captioning and reasoning.

Besides, we draw the following two conclusions: (1) In-
struction tuning data has a greater impact on performance
than pre-training data. (2) High-quality instruction tuning
data can significantly enhance model performance. Espe-
cially after training on high-quality video data, the perfor-
mance of the model is greatly improved.

C.6. Detailed Results on Object Hallucination Eval-
uation

In Tab. J, we report the detailed results of the polling-based
object probing evaluation [13]. As shown in Tab. J, Chat-
UniVi outperforms the recently proposed state-of-the-art
methods. Notably, as a 7B model, our method even outper-
forms the 13B model, e.g., MiniGPT-4, in the object hal-
lucination evaluation. These results demonstrate the effec-

tiveness of our method.

D. Additional Qualitative Analysis

D.1. Visualization for the Image Inputs

To gain a deeper insight into the functionality of our pro-
posed dynamic visual tokens, we present the additional vi-
sualization results for the image inputs in Fig. A. In Fig. A,
we provide a diverse range of visualizations encompass-
ing various image categories, including portraits, sports,
wildlife, art, architecture, and food. It is crucial to un-
derscore that our proposed token merging method operates
without the need for object outline labels and is parameter-
free. As shown in Fig. A, the proposed dynamic visual to-
kens effectively generalize objects and backgrounds, em-
powering Chat-UniVi to capture the spatial nuances of im-
ages using a limited number of visual tokens.

D.2. Visualization for the Video Inputs

To gain a more comprehensive understanding of our pro-
posed dynamic visual tokens, we also present additional vi-
sualization results for the video inputs in Fig. B. In the case
of videos, the video is initially divided into several events,
and subsequently, these visual tokens expand over frames
within each event to encapsulate frame-level dynamics. No-



Input image Step one Step two Step three Input image Step one Step two Step three Step threeStep twoStep oneInput image 

Figure A. Visualization of the dynamic visual tokens for the image inputs. We provide a diverse range of visualizations encompassing
various image categories, including portraits, sports, wildlife, art, architecture, and food. It is important to emphasize that our proposed
token merging method is parameter-free and operates without the need for object outline labels.
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Figure B. Visualization of the dynamic visual tokens for the video inputs. It is important to emphasize that our proposed token merging
method is parameter-free and operates without the need for object outline labels. Our method imposes no restrictions on the number of
frames per event, showcasing the remarkable flexibility and generalization ability of our methodology.



tably, our method imposes no restrictions on the number
of frames per event, showcasing the remarkable flexibility
and generalization ability of our methodology. As shown
in Fig. B, the proposed dynamic visual tokens significantly
reduce the number of visual tokens while maintaining the
expressive capabilities of the model. This empowerment
equips Chat-UniVi with the capacity to capture the broader
temporal understanding required for videos, all within the
confines of a limited number of visual tokens.

D.3. Examples of Conversations

The conversation includes both the image and the video.
In Fig. C and Fig. D, we present examples of conversations
that encompass both the image and the video. As shown
in Fig. C and Fig. D, Chat-UniVi offers detailed and con-
textually appropriate responses aligned with user prompts.
These illustrative examples showcase the remarkable ability
of Chat-UniVi to comprehend both image and video con-
texts across multiple conversational turns.

The conversation includes multiple videos. Fig. E il-
lustrates a conversation example including multiple videos.
As shown in Fig. E, Chat-UniVi can use the information of
multiple videos in the context, and provide appropriate and
coherent responses based on user prompts. The illustrative
example showcases the remarkable ability of Chat-UniVi to
comprehend multiple video contexts across multiple con-
versational turns.

The conversation includes multiple images. Fig. F pro-
vides an illustrative conversation example including multi-
ple images. As shown in Fig. F, Chat-UniVi adeptly lever-
ages information from multiple images within the context,
enabling it to make choices among various images. This
illustrative example highlights the impressive capacity of
Chat-UniVi to grasp multiple image contexts seamlessly
throughout various conversational exchanges.

The conversation includes the image. Fig. G features
an example of a conversation that incorporates an image.
As shown in Fig. G, Chat-UniVi excels at providing de-
tailed descriptions and can even craft compelling narratives
inspired by the image. The illustrative example showcases
the remarkable ability of Chat-UniVi in the realms of rea-
soning and creative expression.

The conversation includes the video. In Fig. H and
Fig. I, we offer examples of conversations that incorporate
the video. As shown in Fig. H and Fig. I, Chat-UniVi ex-
hibits a remarkable proficiency in comprehending videos
and is adept at offering valuable insights inspired by the
video content. These illustrative examples showcase the re-
markable ability of Chat-UniVi to grasp video contexts and
engage in reasoned responses.

E. Details of Quantitative Evaluations

E.1. GPT-based Evaluation for Image Understand-
ing

Our quantitative evaluation protocol follows that of Liu
et al. [16]. Following Liu et al. [16], Zhang et al. [30], we
employ 90 questions based on 30 COCO validation images,
covering various aspects, including conversation, detail de-
scription (Detail), and complex reasoning (Reason). These
images are randomly selected by Liu et al. [16]. We uti-
lize the GPT-4 model to generate reference responses based
on the question, and the ground-truth bounding boxes and
captions. During the model evaluation process, the model
predicts answers based on both the question and input im-
age. After obtaining the response from the model, we feed
the question, visual information (in the format of captions
and bounding boxes), the generated response, and the refer-
ence response to GPT-4. GPT-4 evaluates the helpfulness,
relevance, accuracy, and level of detail of the responses, as-
signing an overall score on a scale of 1 to 10, where a higher
score indicates better overall performance. Besides, we also
ask GPT-4 to provide a comprehensive explanation of the
evaluation to enhance our understanding of the models.

E.2. GPT-based Evaluation for Video Understand-
ing

The quantitative evaluation protocol for video understand-
ing follows the methodology introduced by Maaz et al. [18].
Specifically, Maaz et al. [18] curates a test set based on
the ActivityNet-200 dataset [5], which includes videos with
rich, dense descriptive captions and associated question-
answer pairs from human annotations. During the model
evaluation process, we employ the GPT-3.5 model to assign
a relative score to the generated predictions on a scale of
1-5, across five critical aspects: (1) Correctness of informa-
tion (Correct). (2) Detail orientation (Detail). (3) Contex-
tual understanding (Context). (4) Temporal understanding
(Temporal). (5) Consistency. It is worth noting that the re-
sults reported in Maaz et al. [18] span a range from 0 to
5. To standardize the metrics, we normalize all scores to a
scale of 0 to 100.

E.3. Zero-shot Video Question Evaluation

Our evaluation protocol follows that of Maaz et al. [18],
utilizing GPT-assisted evaluation to assess the capabilities
of models. During the model evaluation process, we feed
the question, the ground-truth answer, and the generated re-
sponse to the GPT-3.5 model. GPT-3.5 evaluates whether
the generated responses are correct and assigns a matching
score on a scale of 0 to 5, where a higher score indicates
better overall performance.



E.4. Zero-shot Object Hallucination Evaluation

To quantitatively evaluate the hallucination problem of the
model, we adopt the polling-based object probing evalua-
tion (POPE) process proposed by Li et al. [13]. Specifically,
POPE formulates the evaluation of object hallucination as a
binary classification task, where the model is prompted to
respond with either “Yes” or “No” to queries like “Is there
a chair in the image?”. Li et al. [13] randomly selects 500
images from the COCO validation set. Each image contains
more than three ground-truth objects in the annotations, and
six questions are generated for each image. The annota-
tions of objects in images directly construct the questions
with the answer “Yes”. For the questions with the answer
“No”, three different strategies are employed for sampling
their probing objects as follows:
• Random Sampling. Randomly sampling objects that do

not exist in the image.
• Popular Sampling. Selecting the top-3 most frequently

occurring objects in the COCO dataset that are absent
from the image.

• Adversarial Sampling. Initially, Li et al. [13] rank all
objects based on their co-occurring frequencies with the
ground-truth objects, and subsequently select the top-3
most frequent objects from this list that are not present
in the image.
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Figure C. A conversation with both image and video. The blue box shows the user input. The gray box shows the model output.



Figure D. A conversation with both image and video. The blue box shows the user input. The gray box shows the model output.



Figure E. A conversation includes multiple videos. The blue box shows the user input. The gray box shows the model output.



Figure F. A conversation includes multiple images. The blue box shows the user input. The gray box shows the model output.



Figure G. A conversation includes the image. The blue box shows the user input. The gray box shows the model output.



Figure H. A conversation includes the video. The blue box shows the user input. The gray box shows the model output.



Figure I. A conversation includes the video. The blue box shows the user input. The gray box shows the model output.
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