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Abstract

The supplementary material contains:
(I) Visualizations for pairwise registration on the 3DMatch
and 3DLoMatch datasets,
(II) Visualizations for multiway registration on the NSS
dataset,
(III) Registration recall for multiway registration on the
four datasets,
(IV) Ablation study on pairwise registration results on the
NSS dataset,
(V) The run-times of the methods, and
(VI) A video that gives a summary of our method and re-
sults.

1. Visualizations of Pairwise Registration
In Figures 1 and 2, we show pairwise registration results
on the 3DLoMatch and 3DMatch datasets, respectively. We
do not show pairwise results on NSS and KITTI since: (i)
the NSS point clouds represent spaces with ceiling infor-
mation and lack details – such pairwise registration results
are hard to interpret even with the ceilings are cut off; and
(ii) the results on KITTI are quite saturated with all meth-
ods achieving good results. While our ODIN achieves the
most accurate registrations (as per Table 1 in the main pa-
per), no significant difference is visible in the pairwise vi-
sualizations. We show the results of the three best matchers
(according to Table 1 in the main paper), namely ODIN,
PEAL [14] and GeoTransformer [8].

1.1. Visualizations on 3DMatch

In Figure 1, we show examples of point cloud registration
on the 3DMatch dataset. We also report the RMSE for all
results, which we use to determine if two point clouds are
correctly registered. Specifically, per row:
Row (1): This example showcases a particularly challeng-
ing pair with a very low overlap in the point clouds. While

all methods manage to estimate the correct pose coarsely,
both GeoTransformer and PEAL achieve high RMSE. The
output of our ODIN is close to the ground truth transfor-
mation, with an RMSE that is substantially lower than its
competitors.
Row (2): In this case, GeoTransformer fails to find a correct
pose, even coarsely. Similar to row (1), PEAL manages to
output an acceptable transformation. However, it has a high
RMSE, that is far from the ground truth. The registration
output of ODIN is almost an order of magnitude more ac-
curate than that of PEAL in terms of RMSE, and, visually,
it is very close to the ground truth registration. This suc-
cess underscores the efficacy of our dual-stream architec-
ture combined with the attention mechanism, which directs
the network’s focus towards regions of high confidence for
more dependable correspondence inference. Additionally,
the diffusion model plays a crucial role in eliminating noisy
matches, further enhancing the overall precision.
Row (3): In this example, both GeoTransformer and PEAL
fail. ODIN has a higher RMSE than in the above examples,
however, the registration output is visually acceptable and
closer to the ground truth.

While the examples show that there is still room for im-
provement, ODIN clearly achieves substantially better reg-
istrations than the state of the art in 3D Match.

1.2. Visualizations on 3DLoMatch

In Figure 2, we show examples of point cloud registration
on the 3DLoMatch dataset. Similar to 3DMatch, we report
the RMSE for all results. Specifically, per row:
Row (1): In this example, we observe that ODIN recovers
the pose very accurately, while both GeoTransformer and
PEAL fail entirely. Their RMSE is two orders of magni-
tude higher than that of ODIN. This again highlights the
importance of the proposed two-stream architecture and the
diffusion-based denoising.
Row (2): Here, ODIN provides a close-to-GT pose. Geo-
Transformer and PEAL struggle to find a good pose.

https://youtu.be/dnzhKfPIoWg


Method NSS 3DMatch 3DLoMatch KITTI
RR (%)↑ RE (◦)↓ TE (m)↓ RR (%)↑ RE (◦)↓ TE (cm)↓ RR (%)↑ RE (◦)↓ TE (cm)↓ RR (%)↑ RE (◦)↓ TE (cm)↓

Predator 64.6 13.43 0.65 PEAL 94.1 4.72 15.8 78.8 16.03 50.2 75.7 9.46 11.85
+ Open3d [3] 51.3 12.76 0.64 + Open3d 81.8 4.72 15.8 68.9 14.23 45.1 83.2 6.21 7.72
+ DeepMapping2 [2] 60.1 11.54 0.64 + DeepM. 82.7 4.23 14.5 70.1 13.25 39.4 91.5 3.34 6.04
+ LMPR [6] 65.1 11.35 0.62 + LMPR 82.4 3.98 12.6 70.7 13.07 37.3 81.1 6.79 7.89
+ LIRTS [13] 65.9 11.42 0.61 + LIRTS 86.9 3.95 12.0 76.2 11.52 36.0 84.7 5.17 6.94
+ RMPR [12] 66.9 10.87 0.62 + RMPR 95.9 3.57 11.6 83.1 10.18 34.4 86.1 4.69 6.38
+ Wednesday 75.6 2.24 0.51 + Wednesday 96.8 2.58 9.4 86.4 7.21 29.1 94.6 2.52 5.92
ODIN + Wednesday 78.3 2.01 0.42 97.3 2.32 8.4 87.1 6.44 26.5 96.2 2.18 4.76

Table 1. Multiway point cloud registration on the NSS [11], 3DMatch [15], 3DLoMatch [7] and KITTI [5] datasets. The reported metrics
are the registration recall (RR), average rotation (RE) and translation errors (TE). For each dataset, we choose the best-performing pairwise
estimator from the baselines. We run Predator [7] on NSS and PEAL [14] on the other datasets. The best results are in bold.

Method All spatiotemporal pairs Only same-stage pairs Only different-stage pairs
RR (%)↑ RTE (m)↓ RRE (°)↓ RR (%)↑ RTE (m)↓ RRE (°)↓ RR (%)↑ RTE (m)↓ RRE (°)↓

FPFH [10] 11.70 2.23 45.32 30.82 2.42 29.35 0.42 4.06 78.01
FCGF [4] 24.43 2.04 39.89 42.86 2.23 32.12 10.52 3.23 53.24
D3Feat [1] 22.73 2.26 33.09 36.51 2.05 27.22 4.76 2.53 40.76
Predator [7] 64.97 0.65 13.52 92.99 0.27 4.83 28.42 1.16 24.85
GeoTransformer [9] 39.07 0.99 22.93 55.59 0.73 17.02 17.51 1.34 30.62
PEAL [14] 58.72 0.71 15.78 88.63 0.32 5.32 19.71 1.22 29.42
ODIN 69.73 0.54 11.96 95.46 0.21 4.36 36.17 0.97 21.87

Table 2. Pairwise point cloud registration on the NSS dataset. The reported metrics are the Registration Recall (RR), which measures the
fraction of successfully registered pairs; the Relative Rotation Error (RRE); and the Relative Translation Error (RTE). We show ablation
results for same-stage and different-stage pairs. The best results are in bold.

Row (3): In this example, all methods fail to recover a good
pose. However, ODIN still manages a significantly lower
RMSE than the other methods. In addition, visually, the
output is not far from the ground truth alignment.

2. Visualizations of Multiway Registration

In Figure 3, we show examples of point cloud multiway
registration for the NSS dataset. We choose to visualize NSS
as it is the most challenging dataset. We show results of our
proposed method and [12, 13]. We choose [12, 13] as they
are – after ours – the next best-performing methods as per
Table 2 in the main paper. Specifically, per row:

Rows (1), (2), (3) and (4): LIRST [13] and RMPR [12] fail
to achieve an acceptable global registration in these exam-
ples. Their outputs are incomprehensible and are far from
the expected results. Such outputs are frequent for these
methods on this dataset. While our proposed method has in-
accuracies, it provides substantially more accurate registra-
tions that are not far from the ground truth. This highlights
that the proposed multiway registration pipeline is more ro-
bust to such complicated scenarios than the state of the art.

Row (5): In this example, all methods fail to achieve a
good registration. As before, both LIRST and RMPR re-
sults are incomprehensible. Our method manages to find
the structure coarsely, however, there are mistakes, showing
that there is still room for improvement.

3. Multiway Registration Recall

We provide the registration recall (RR) for multiway reg-
istration on the NSS [11], 3DMatch [15], 3DLoMatch [7],
and KITTI [5] datasets in Table 1. RE and TE are taken
from Table 2 in the main paper. The successfully registered
pairs are defined following the protocol from [9, 11, 12].
For each dataset, we choose the best-performing pairwise
estimator from the baselines. We run Predator [7] on NSS
and PEAL [14] on the other datasets.

Our proposed Wednesday (without ODIN) consistently
improves upon all state-of-the-art algorithms and gains
0.9% to 8.7% in RR compared to the second-best method on
the four datasets. Our full pipeline, ODIN + Wednesday,
achieves additional improvements on RR on all datasets.

4. Pairwise Ablation on the NSS Dataset

We show an ablation of the pairwise point cloud registration
results on the NSS dataset in Table 2. The reported metrics
are the Registration Recall (RR), which measures the frac-
tion of successfully registered pairs; the Relative Rotation
Error (RRE) in degrees (◦); and the Relative Translation Er-
ror (RTE) in meters (m). Specifically, we ablate the results
for same-stage pairs and different-stage pairs as defined in
the original paper [11], which evaluates independently the
performance of pairs of point clouds from the same (w/o
change) or different (w/ change) temporal stages.

The first three columns (first block) show the results on



all pairs regardless of being from same or different stages.
This is the same as in Table 1 in the main paper. For
the same-stage pairs (second block), the results improve
for all methods compared to the previous case and fol-
low the same trend in the order of performance. However,
only three algorithms provide very high performance (above
88%; Predator, PEAL, and ODIN), with ODIN being the
most accurate. The rest follow at below 55% of perfor-
mance. On the different-stage pairs, there is a substantial
difference (i.e., 7.7% RR) between ODIN and the second
best method, Predator. While ODIN is significantly better
than all competitors, it is important to note that its RR on the
different-stage pairs is still far from 100%. This highlights
that further improvements are needed to robustly solve such
complicated scenarios exhibiting temporal changes.

We find it interesting that, while PEAL falls short com-
pared to Predator, our ODIN significantly outperforms both,
while building on similar architectural blocks as PEAL.
This demonstrates the importance of the proposed two-
stream attention learning architecture coupled with the dif-
fusion denoising module. PEAL’s effectiveness heavily re-
lies on the initial pose provided by the GeoTransformer. It
struggles to correct this initial pose if it is too inaccurate.
In contrast, our method does not rely on an initial pose and,
thus, it identifies correct correspondences more robustly. It
effectively filters out erroneous correspondences, retaining
only those with high confidence.

5. Processing Times
We evaluate the runtime on a computer with Intel(R)
Xeon(R) CPU E3-1284L v4 @ 2.90GHz and GeForce RTX
3090 GPU. In Table 3, we provide the total and average
times in seconds of pairwise registration methods on the
3DMatch dataset. The total time represents the cumula-
tive runtime for pairwise registration across the entire scene,
while the average time denotes the mean duration expended
for each individual pair. The results show that the proposed
ODIN runs at a similar speed to its less accurate alterna-
tives. Specifically, it is marginally slower than GeoTrans-
former and PEAL, and it is twice as fast as Predator.

In Table 4, we provide the total and average times of mul-
tiway registration methods on the 3DMatch dataset. For this
experiment, we compare using the same methods as those
listed in Table 2 of the main paper. The proposed method,
Wednesday, falls in the middle in terms of runtime.

In conclusion, there is no trade-off when using the pro-
posed ODIN and Wednesday. They obtain state-of-the-art
results while running at a similar speed as the baselines.

References
[1] Xuyang Bai, Zixin Luo, Lei Zhou, Hongbo Fu, Long Quan,

and Chiew-Lan Tai. D3feat: Joint learning of dense detection
and description of 3d local features. In CVPR, 2020. 2

Method Total Time (s) Average Time (s)

Predator 460 0.26
GeoTr. 159 0.09
PEAL 212 0.12
ODIN 248 0.14

Table 3. Total and average time of pairwise point cloud registration
pipelines on the 3DMatch dataset.

Method Total Time (s) Average Time (s)

PEAL 212 0.12
PEAL + Open3d 283 0.16
PEAL + DeepMapping2 7399 4.18
PEAL + LMPR 301 0.17
PEAL + LIRTS 425 0.24
PEAL + RMPR 244 0.14
PEAL + Wednesday 389 0.22
ODIN + Wednesday 425 0.24

Table 4. Total time and average time per point cloud pair of multi-
way point cloud registration pipelines on the 3DMatch dataset.

[2] Chao Chen, Xinhao Liu, Yiming Li, Li Ding, and Chen
Feng. Deepmapping2: Self-supervised large-scale lidar map
optimization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9306–
9316, 2023. 2

[3] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Ro-
bust reconstruction of indoor scenes. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5556–5565, 2015. 2

[4] Christopher Choy, Jaesik Park, and Vladlen Koltun. Fully
convolutional geometric features. In ICCV, 2019. 2

[5] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE conference on computer vision and pat-
tern recognition, pages 3354–3361. IEEE, 2012. 2

[6] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas,
and Tolga Birdal. Learning multiview 3d point cloud reg-
istration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1759–1769,
2020. 2

[7] Shengyu Huang, Zan Gojcic, Mikhail Usvyatsov, Andreas
Wieser, and Konrad Schindler. Predator: Registration
of 3d point clouds with low overlap. In Proceedings of
the IEEE/CVF Conference on computer vision and pattern
recognition, pages 4267–4276, 2021. 2, 6

[8] Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing
Peng, and Kai Xu. Geometric transformer for fast and robust
point cloud registration. In CVPR, 2022. 1

[9] Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing
Peng, Slobodan Ilic, Dewen Hu, and Kai Xu. Geotrans-
former: Fast and robust point cloud registration with geo-
metric transformer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023. 2



[10] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast
point feature histograms (FPFH) for 3D registration. In
ICRA, 2009. 2

[11] Tao Sun, Yan Hao, Shengyu Huang, Silvio Savarese, Konrad
Schindler, Marc Pollefeys, and Iro Armeni. Nothing stands
still: A spatiotemporal benchmark on 3d point cloud regis-
tration under large geometric and temporal change, 2023. 2,
7

[12] Haiping Wang, Yuan Liu, Zhen Dong, Yulan Guo, Yu-Shen
Liu, Wenping Wang, and Bisheng Yang. Robust multiview
point cloud registration with reliable pose graph initialization
and history reweighting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9506–9515, 2023. 2

[13] Zi Jian Yew and Gim Hee Lee. Learning iterative robust
transformation synchronization. In 2021 International Con-
ference on 3D Vision (3DV), pages 1206–1215. IEEE, 2021.
2

[14] Junle Yu, Luwei Ren, Yu Zhang, Wenhui Zhou, Lili Lin, and
Guojun Dai. Peal: Prior-embedded explicit attention learn-
ing for low-overlap point cloud registration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 17702–17711, 2023. 1, 2

[15] Andy Zeng, Shuran Song, Matthias Nießner, Matthew
Fisher, Jianxiong Xiao, and Thomas Funkhouser. 3dmatch:
Learning local geometric descriptors from rgb-d reconstruc-
tions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1802–1811, 2017. 2, 5



Figure 1. Qualitative Results for the 3DMatch [15] dataset. See Section 1.1 for an explanation of the results. Best viewed in screen.



Figure 2. Qualitative Results for the 3DLoMatch [7] dataset. See Section 1.2 for an explanation of the results. Best viewed in screen.



Figure 3. Qualitative Results for the NSS [11] dataset. See Section 2 for an explanation of the results. Best viewed in screen.
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