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1. Morphological Operations in Fusion Block
After applying the adaptive thresholding, we perform

morphological operations on the heat map with the main
purpose of removing isolated background points and puri-
fying the patch area. For an input image with dimensions
w × h× c, we set the adaptive base kernel size as follows:

kbase =
min(w, h)

δ
× min(w, h)

δ
, (1)

where δ is a fixed hyperparameter that we set to 80 in our
implementation. To minimize the impact on the integrity of
the patch area, we adopt a progressive strategy. The initial
opening operation uses a kernel of size kbase × 2, followed
by a closing operation with a kernel size of kbase, and finally
a second opening operation with a kernel size of kbase × 3.
We visualize each step of the morphological operation pro-
cess, as shown in Figure 1. As shown in the examples, small
noise pixels are initially removed during the first opening
operation. Subsequently, the closing operation fills in small
holes within the patch region, preventing disconnected ar-
eas from being eroded in the subsequent opening operation.
Finally, the larger kernel size in the opening operation ef-
fectively eliminates spikes or small bridges, resulting in a
more accurate and complete patch region. The consecutive
application of these morphological operations optimizes and
refines the patch localization results.
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Figure 1. Visualization examples of morphological operations.

2. More About Evaluation on Digital Attacks
2.1. Defense performance against more attacks

We conduct additional defense experiments against more
state-of-the-art physical patch attack methods [5][6] on dif-

ferent datasets. As shown in Table 1, PAD achieves the best
performance against all of them. Among them, experiments
against AdvTexture and T-SEA are conducted on YOLOv2,
and the rest are conducted on Faster R-CNN. The experi-
mental results demonstrate the generalizability of PAD in
diverse detection scenarios.

Table 1. mAP (%) under more attacks on different datasets.

Attack Dataset Undefended LGS SAC Jedi PZ[11] PAD
AdvTexture

[5] Inria 43.51 75.26 59.08 68.88 - 79.83

T-SEA
[6]

Inria 17.05 35.15 17.60 40.22 - 74.93
COCO-
Person 10.56 13.33 10.59 15.32 - 30.93

Dpatch COCO 29.1 40.7 44.1 38.5 - 45.1
Masked PGD VOC 10.90 61.53 62.81 60.79 66.10 67.12

2.2. Defense performance on other detectors

In addition to the experimental results on Faster R-CNN,
YOLOv3, and YOLOv5s listed in Table 1 of the main pa-
per, we also conduct defense performance evaluations on
YOLOv2 [8] and YOLOv8n [1] with the same setting. The
detailed results are presented in Table 2.

From the experimental results, it can be observed that,
consistent with the results on Faster R-CNN, YOLOv3,
and YOLOv5s, our PAD achieves the best defense perfor-
mance on YOLOv2 and YOLOv8n as well. PAD demon-
strates a considerable improvement in mean average preci-
sion (mAP) compared to suboptimal state-of-the-art meth-
ods when defending against different types of adversarial
patches while maintaining a similar clean performance.

2.3. Ablation study for patch inpainting

After obtaining an accurate patch mask, PAD employs a
simple inpainting method: replacing the patch region with
black pixels, which is consistent with [3, 7]. To validate
the effectiveness of this inpainting approach, we compare
it with another inpainting method: the coherence transport-
based inpainting method (inpaintBCT) [2], which is used in
Jedi [9]. We evaluate the defense performance using these
two inpainting methods on different detectors, as shown in
Table 3.

According to the results, inpaintBCT works better in
some cases, but in most cases, black works better. Com-
paring the results in Table 1 of the main paper, it can be
observed that regardless of the specific inpainting method
used, both achieve superior defense performance compared
to other state-of-the-art methods. This highlights the ab-
solute advantage of PAD in patch localization, making the
choice of inpainting method less crucial. The simplest re-
moval method is sufficient to achieve a satisfactory defense
effect.



Table 2. mAP(%) on YOLOv2 and YOLOv8n. The best performance is bolded, and the suboptimal performance is underlined.

Detector Defense Clean OBJ OBJ-CLS Upper P1 P2 P3 P4 P5 P6

YOLOv2

Undefended 90.13 3.71 10.48 20.99 12.07 60.50 24.50 49.23 33.93 21.10
LGS (WACV19) 89.28 5.27 46.63 55.75 20.43 61.59 27.62 60.88 38.41 27.30
SAC (CVPR22) 90.11 60.48 67.90 68.20 17.70 24.75 24.75 64.58 35.05 22.69
Jedi (CVPR23) 89.01 19.30 63.26 52.03 26.30 62.90 49.56 57.69 48.26 53.77

PAD (Ours) 89.77 76.79 82.92 81.33 35.79 79.71 75.00 80.88 78.23 71.88

YOLOv8n

Undefended 96.42 56.74 75.30 65.77 68.48 50.89 51.78 65.81 51.64 50.06
LGS (WACV19) 96.60 47.52 82.57 82.00 68.14 51.41 53.11 79.42 62.40 64.30
SAC (CVPR22) 96.42 81.92 86.95 84.59 69.86 51.03 51.80 78.19 53.51 50.95
Jedi (CVPR23) 96.64 57.63 64.35 58.13 69.85 66.20 66.94 65.90 64.20 69.51

PAD (Ours) 96.40 87.53 87.69 88.92 70.73 74.84 78.68 85.37 81.51 77.25

Table 3. mAP (%) of inpainting-ablated PAD under different adversarial patch attacks. The best performance is bolded.

Detector Defense OBJ OBJ-CLS Upper P1 P2 P3 P4 P5 P6
Faster

R-CNN
PAD-inpaintBCT 82.60 89.44 85.84 71.50 83.05 83.14 84.75 84.79 79.64
PAD-black 86.80 87.80 88.95 68.40 87.81 85.00 87.56 89.21 83.23

YOLOv2 PAD-inpaintBCT 74.51 82.07 79.45 23.73 76.17 74.25 78.12 76.67 64.71
PAD-black 76.79 82.92 81.33 35.79 79.71 75.00 80.88 78.23 71.88

YOLOv3 PAD-inpaintBCT 84.49 89.98 87.19 83.26 82.90 83.73 86.28 84.22 80.53
PAD-black 85.84 91.06 88.56 78.00 87.38 87.46 89.13 87.76 86.13

YOLOv5s PAD-inpaintBCT 78.73 83.22 78.66 45.21 58.28 66.02 66.91 58.57 54.15
PAD-black 84.01 83.62 84.54 42.01 58.38 69.87 78.97 67.31 61.08

YOLOv8n PAD-inpaintBCT 83.72 89.94 86.08 73.58 74.61 79.43 84.67 75.70 67.57
PAD-black 87.53 87.69 88.92 70.73 74.84 78.68 85.37 81.51 77.25

3. More About Evaluation on Physical Attacks

3.1. Ablation results on APRICOT

To investigate the individual contributions of semantic
independence and spatial heterogeneity in defense against
physical attacks, we conducted ablation experiments on the
APRICOT dataset. Table 4 presents the adversarial success
rate (ASR) for five detectors using semantic independence
alone, spatial heterogeneity alone, and both semantic inde-
pendence and spatial heterogeneity combined.

Table 4. ASR (%) of ablated PAD on APRICOT. Lower values
indicate better defense performance.

Detector PAD-MI only PAD-CD only PAD-all
Faster

R-CNN 3.03 4.54 2.27

YOLOv2 0.62 1.52 0.43
YOLOv3 0 0.64 0.60
YOLOv5s 0 0 0
YOLOv8n 0.27 0.45 0.42

The experimental results indicate that under the physi-
cal attack setting, semantic independence performs better
than spatial heterogeneity, yielding lower ASR values across
all five detectors. This finding aligns with our analysis in
Section 5.4 of the main paper. Even without adjusting the

weights of semantic independence and spatial heterogene-
ity, PAD still achieves significant defense effectiveness.

3.2. Visualization of patch localization on APRICOT

In Figure 2, we present visual examples showcasing the
patch localization process of PAD on the APRICOT dataset.
Compared with the visual examples under digital attacks in
Figure 3 of the main paper, it can be observed that the in-
fluence of spatial heterogeneity in physical attack scenarios
may be affected by lighting conditions, angles, and imaging
processes. On the other hand, the significance of semantic
independence becomes more prominent. These two charac-
teristics play different roles in defending against digital and
physical attacks, and their organic combination contributes
to the exceptional performance of PAD.

Additionally, we compare the heat map when using se-
mantic independence alone in PAD with the entropy-based
defense approach [9] in Figure 3. It can be observed that
complex textured backgrounds, such as shelves filled with
goods, have a significant impact on the entropy-based de-
fense, resulting in high entropy values in a large portion of
the background area. However, the performance of semantic
independence localization based on mutual information in
PAD, remains relatively stable. This is because although the
background area is complex, adjacent regions still exhibit
semantic correlation, leading to lower values of semantic in-
dependence.
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Figure 2. Visualization examples illustrating the patch localization process of PAD on APRICOT.

3.3. Data distribution of physical test set

We print 9 different patches including P1-P6 [4], OBJ,
OBJ-CLS, and Upper [10], taking videos in both indoor and
outdoor environments across five different scenes. We build

the physical test set which consists of 1100 images. Figure
4a and Figure 4b display the distribution of the patches and
indoor/outdoor scenes respectively.
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Figure 3. Visualization comparison of entropy heat map and semantic independence heat map.
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Figure 4. Data distribution of our physical test set.

4. Discussion on Adaptive Attacks

In order to bypass the defense method proposed in this
paper, attackers would need to ensure two key aspects dur-
ing the patch generation process: 1) The image quality of the
patch should be as consistent as possible with other parts of
the image. 2) The patch should be semantically similar to
its surrounding context. However, image quality can vary
significantly depending on the capturing device and the im-
age compression algorithms used. Additionally, the seman-
tic content differs across each image and different positions
within an image. Therefore, achieving both of these require-

ments would necessitate training unique patches for differ-
ent positions within each image, rendering patch reusability
impossible. This limitation proves fatal for physical attacks,
meaning attackers cannot pre-train patches and simply print
and place them in different scenes to execute attacks. Even
if the goal is to target a fixed scene and angle, the pres-
ence of moving objects (such as pedestrians or vehicles)
and the variability introduced by factors like camera angles
and lighting condition would prevent the attacker from accu-
rately predicting the final image composition. Additionally,
if the patch content closely matches the surrounding seman-
tic space, the detect model will likely confuse it with the
surrounding context, resulting in a low probability of attack
success. Therefore, the threat of adaptive attacks against
PAD is weak.
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