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Supplementary Material

6. Video Demonstration
To gain a more comprehensive understanding of our method
for generating the indoor scene, we kindly invite you
to watch the video on our project page: https://
akirahero.github.io/diffindscene/. The
video demonstrates an example of the coarse-to-fine gener-
ation process, and the the post-processing of texturing using
DreamSpace [14]. Furthermore, to provide a more detailed
and complete perspective on the inner scene structures, a
random walk is conducted within the generated scene.

7. Implementation Details
7.1. Dataset and Preprocessing

Indoor Scene Generation from Scratch. 3D-FRONT [4]
provides professionally designed layouts and a large num-
ber of rooms populated by high-quality 3D models. How-
ever, when organizing the mesh models to a complete scene,
the meshes may intersect with each other. Additionally,
most of them are not watertight meshes. These factors lead
to erroneous Truncated Signed Distance Function (TSDF)
volumes. In such cases, the meshes retrieved from TSDF
volumes contains lots of wrong connections. To address
this problem, we perform a solidification and voxel remesh-
ing on each scene mesh, using a pipeline of modifiers from
Blender with a voxel size of 0.02m. All meshes are saved
as triangular format. After the watertight meshes are ob-
tained, we derive the SDF volumes by using a open-source
software SDFGen [1], with a resolution of 0.04m. Then the
SDF volumes are truncated to TSDF by a maximum dis-
tance of 0.12m.
Refinement on the Reconstruction from Multi-view
Stereo(MVS). We use the official train / validation / test
split of ScanNet(v2) dataset, including 1201 / 312 / 100
scenes respectively. For there is no TSDF ground truth
provided in this dataset, we adopt a TSDF fusion method
like [6] to produce the ground truth as NeuralRecon does.
We only use TSDF data without any other data type such as
images in the whole training/testing process. To compare
the reconstruction results with pretrained NeuralRecon, the
grid size of TSDF volume is set to 0.04m, and the trunca-
tion distance is set to 0.12m. The default value of the TSDF
volume is 1.0.

In the training process, a random volume crop of 96 ⇥
96⇥ 96 is used as data augmentation, where a random rota-
tion between [0, 2⇡] and a random translation is performed
before cropping. To ensure that the sampling crop con-
tains sufficient occupied voxels, the translation is limited

in the bounding box of global occupied region, and the en-
tire cropped volume should be within the boundary of this
region.

7.2. Sparse Diffusion Model
Network Structure. TorchSparse [12] is used to imple-
ment the UNet structure of our network for noise prediction.
A group normalization(32 groups) and a SiLU activation
are used successively before any layer of sparse convolu-
tion. The network strctures used in difference stages of our
cascacded diffusion are shown in Fig. 9, where SparseRes
and Spatial Transformer are key components of our imple-
mentation as shown in Fig. 10.
Training & Inference Settings. The network parameters
are randomly initialized in training process, and we use the
Adam optimizer with a learning rate of 1.0⇥ 10�4.

As for the diffusion framework, the DDIMScheduler
in the open-source diffusers [13] is developed as our code-
base. Following [2] and [10], we adopt the ↵�conditioning
to stabilize training, and enable the parameter tuning over
the noise schedule and the timesteps during inference stage.
More concretely, the cumulative product of ↵t namely ↵̄t is
used as a substitute of the timestep t as time embedding in
most existing works. In Section 4.1, we use a cosine noise
schedule with 2000 timesteps during training, and the same
noise schedule is used with 200 time-steps during inference
within the DDIM framework. In Section 4.3, we use a linear
noise schedule of (1e�6, 0.01) with 2000 timesteps during
training, and the same noise schedule is used with 100 time-
steps during inference within the DDIM framework. The
clip range for TSDF sampling is [�3.0, 3.0].

7.3. PatchVQGAN for Learning the Occupancy
Embedding

Network Structure. The network structure of PatchVQ-
GAN described in Section 3.3 is shown in Fig. 11. The
multi-scale encoding and decoding processes are slightly
coupled with each other, while we simplify the description
of the whole model for better understanding in Section 3.3.
The encoder and decoder are implemented hierarchically as
”Encoder 1”, ”Encoder 2”, ”Decoder 1”, and ”Decoder 2”
as shown in Fig. 11 (b)-(e). The multi-layer feed-forward
discriminator is omitted here.

Different from [3], we use quantizers with Gumbel-
Softmax [7] which enables a differentiable discrete sam-
pling. The size of codebook is 8192, with the embedding
dimension of 4 as commonly adopted in [3][9].
Training & Inference Settings. The hyper parameters in
Eq. (11) are initially set to �1 = 1.0, �2 = 0.2. Addition-
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(a) UNet structure in the Stage 1 of our cascaded diffusion.

(b) UNet structure in the Stage 2 and Stage 3 of our cascaded diffusion.

Figure 9. Noise prediction networks in our cascaded diffusion. In Stage 1, we use multiple Spatial Transformers as (a) shows. In Stage 2
and Stage 3, we use same network structure as (b), with only one attention layer in the middle of network.
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Figure 10. Sparse units widely used in our implementation of
noise prediction network in sparse diffusion.

ally, a dynamic weight adapting strategy as [3] is employed
to control �2. The network parameters are randomly ini-
tialized with normal distribution in training process, and we
use the Adam optimizer with a learning rate of 1.0⇥ 10�5.

7.4. Local Fusion of Diffusion

The average fusion method mentioned in Section 3.4 is de-
fined as follows.

Average Fusion. Suppose x
k

t
(p) ⇠ N (µk

t
(p),⌃k

t
(p)), we

have:

xt(p) ⇠ N (
1

|G(p)|
X

k2G(p)

µ
k

t
(p),

1

|G(p)|2
X

k2G(p)

⌃k

t
(p)).

(14)
The rapidly decreasing variance impacts generation diver-
sity and quality. We, therefore, propose a stochastic TSDF
fusion algorithm.

7.5. User Study
We conduct two user studies on meshes from generation and
reconstruction refinement in Section 4.1 and 4.3, which are
slightly different.
Generation. We use same metric as Text2Room [5]: Com-
pleteness and Perceptual. In every page of the survey, the
users scores one scene from one method by 1-5 points on
these 2 metrics. Then we take an average score on each
method.
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(a)  Encoding-Decoding pipeline of PatchVQGAN
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Figure 11. Network structure of PatchVQGAN.

Reconstruction Refinement. We employ more metrics
here, including details, completeness, plane quality, and
edge quality. To save the time of the users, we use rank-
ing rather than scoring for each scene. The feedback score
Si for the i-th scene is computed as

Si =
1

di

diX

j=1

s(ri,j), (15)

where ri,j 2 1, 2, 3, 4 represents the ranking given by the
j-th user for the i-th scene. The function s(r) = 4 � r

converts the ranking into a score, with the r-th rank worth
4�r score. di is the total number of valid feedbacks for the
i-th scene. By summing up the scores across all scenes, we
obtain the total score

S =
NX

i=1

Si (16)

8. More Results on Unconditional Scene Gen-
eration

We provide more scene generation samples as shown in
Fig. 12 - Fig. 14.

Fig. 12 is an additional comparison between our method
and Text2Room [5]. Since the Poisson [8] reconstruction
can produce better results than pure Text2Room, we only
show the results of ”Text2Room + Poisson”. Fig. 13 and
Fig. 14 are generated scene samples of our method.

9. Conditional Generation: Sketch-to-Scene
We extend our model to accept bird-eye-view sketch im-
age as condition. We concatenate its VAE encoding to the
input, and incorporate it to compute cross-attention within
all “SpatialTransformers” in Fig. 9. The sketch-to-scene re-
sults are as 15 shows, and the generated scene geometry is
consistent with the given condition.
Sketch Data. The sketch data is produced by cutting
through the middle of 3D occupancy along the up axis.
The cutting height is randomly sampled during training. As
shown in Fig. 15 (a), the black line actually consists of the
occupied voxels.
Sketch Encoding. To capture high-level geometry informa-
tion in the sketch image, the sketch images are first encoded
by a variational autoencoder (VAE). Since most space in the
sketch is blank, we add more weight on the informational



black areas in the training process. The sketch images are
encoded to 16-channel embedding, with same resolution as
the input of the first stage of cascaded diffusion in Fig. 9.
Condition Binding. Because the geometry is mainly de-
cided by the first stage of cascaded diffusion, we only need
to insert the condition embedding into this stage. In our im-
plementation, the sketch embedding is bound to both the in-
put and the attention units. First, we concatenate the sketch
embedding with z

(1)
T

as input to the noise prediction net-
work as Fig. 9 (a). Second, all 3D SpatialTransformer units
in Fig. 9 (a) are substituted by 2D SpatialTransformer to in-
corporate this bird-eye-view embedding to cross-attention.
To adapt to the 2D SpatialTransformer, the 3D data from the
previous blocks is transformed to bird-eye-view 2D data by
using a light-weight convolutional network along the up-
axis, and then the output from 2D SpatialTransformer is up-
sampled back to 3D data.

10. Complementary Evaluation on the Refine-
ment of MVS

We compute the reconstruction metrics “Accuracy” and
“Completeness” for Section 4.3, with threshold of 0.05m
as described in [11]. The results are listed in Table 6. Our
method leads to obvious improvements over NerualRecon
results. For Laplacian smoothing and isotropic remeshing,
we use the implementation provided in MeshLab.

Table 6. Evaluation on MVS refinement using classical recon-
struction metrics.

Accuracy" Completeness"
NeuralRecon 0.412 0.569
NeuralRecon + Laplacian Smoothing 0.415 0.544
NeuralRecon + Isotropic Remeshing 0.385 0.494
NeuralRecon + Ours 0.432 0.593

11. Discussion on the Limitations and Failure
Cases

Our method generates the entire scene end-to-end without
distinguishing different contents. This may lead to unnec-
essary memory consumption, such as when a planar wall
occupies more voxels but with fewer geometry details com-
pared to a table. To address this, we will use a volume with
adaptive resolution, leveraging attention mechanisms to de-
termine where to allocate more voxels. Additionally, we
will incorporate more conditional control from the perspec-
tive of the room designer.

In terms of failure cases, unsatisfying local geometry
more often appears in large scenes. Increasing the training
data is a straightforward solution, but acquiring a sufficient
amount of 3D data is challenging compared to image tasks.

To address this, we will train a detector to identify such ar-
eas. Subsequently, we can erase these areas and perform a
completion. We plan to explore this approach in our future
work.
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Figure 12. Comparison of Text2Room and our approach in larger views. As previous Fig. 5 shows, Poisson reconstruction significantly
improves the performance of pure TextRoom, so that here we only demonstrate the results of Text2Room [5] + Poisson [8]. The textures
of our results are produced by DreamSpace [14] as a post-processing of scene geometry generation.



Figure 13. More generation samples in columns.



Figure 14. More generation samples in columns.



Bird-eye-view Sketch (A)

Generated Sample (A)

Bird-eye-view Sketch (B)

Generated Sample (B)

(a) Binary sketch images as condition input of generation.

(b) The corresponding generated scenes of (a).

Figure 15. Samples of Sketch-to-Scene generation.


