
A. Algorithm

Algorithm 1: The overall process of MDP
Input: Molecular dataset D, number of tasks Nc,

number of sampled examples for each task
η, number of molecular labeling function z

Derive multiple distance matrices {S1, · · · ,Sz} by
measuring the similarity between any two
molecular graphs

Utilize Cluster(D, {S1, · · · ,Sz}) to sample η ×Nc

molecular graphs for generating labeled set DL

for e = 1 to z do
Utilize labeled set DL to generate Λe using Eq.

(3), Eq. (4) and Eq. (5)
repeat

Generate Ỹ using Eq. (6)
Optimize the parameters of the label

synchronizer Gϵ using Eq. (8) via
Ladap

(
Ỹ,Y

)
Optimize the parameters of the molecular

property classifier Dθ using Eq. (7) via
Ls

(
Ȳ,Y

)
and Lu

(
Ȳ, Ỹ

)
until reach the maximum iteration;
return: Model parameters

B. The Statistics of Datasets
The statistics of each dataset are summarized in Table

3. For all molecule datasets, we utilize the scaffold split-
ting procedure [35] to split molecules into training set (0.8),
validation set (0.1) and testing set (0.1) according to their
molecular substructure. Under the setting of weakly super-
vised learning, we train our proposed method and baselines
with the same number of labeled data sampled from the
training set. The remaining data in the training set serves as
the unlabeled training data. The number of labeled data of
each dataset is equal to η×Nc. Nc represents the number of
binary classification tasks of the dataset and η ∈ {10, 20}.
Due to the graph classification task, we use AUC [47] as the
evaluation metric following the previous molecular graph
tasks. Validation set is used for early stopping and evaluate
the AUC on testing set.

• BBBP [29]. The dataset consists of binary labels of
blood-brain barrier penetration (membrane permeabil-
ity).

• Tox21 [12]. The dataset contains the qualitative toxic-
ity measurements on 12 biological targets.

• ToxCast [40]. The dataset includes a large library of

Table 3. Statistics of the datasets.

Dataset Graphs Tasks Avg./Max Nodes Avg./Max Edges
HIV 41,127 1 25.5 / 222 54.9 / 502

MUV 93,087 17 24.2 / 46 52.6 / 104
ToxCast 8,576 617 18.8 / 124 38.5 / 268
Tox21 7,831 12 18.6 / 132 38.6 / 290
BBBP 2,039 1 24.1 / 132 51.9 / 290
BACE 1,513 1 34.1 / 97 73.7 / 202

ClinTox 1,477 2 26.2 / 136 55.8 / 286
SIDER 1,427 27 33.6 / 492 70.7 / 1010

compounds based on over 600 in vitro high-throughput
screenings.

• SIDER [19]. The database of marketed drugs and ad-
verse drug reactions of FDA approved drugs, divided
into 27 system organ classes.

• ClinTox [31]. The dataset that compares drugs ap-
proved by the FDA and drugs that have failed clinical
trials for toxicity reasons.

• MUV [10]. The subset of PubChem BioAssay con-
tains 17 challenging tasks for around 90 thousand com-
pounds and is specifically designed for validation of
virtual screening techniques.

• HIV [2]. The dataset contains 41,127 compounds with
binary labels indicating whether the compound is ac-
tive or inactive against the Human Immunodeficiency
Virus (HIV).

• BACE [45]. The dataset contains the quantitative and
qualitative (binary label) binding results for a set of
inhibitors of BACE-1.

C. Implementation
We use a 5-layer Graph Isomorphism Network

(GIN) [54] as the representation model, due to its expressive
architecture for prediction tasks on graphs. We set the em-
bedding dimension of a GIN layer is 300 and a mean pool-
ing layer for the readout function. The Adam is selected as
the optimizer with initial learning rate of 1 × 10−3. The
batch size is 32 across all scenarios. We set dropout ratio
as 0.5 for GIN layers and default settings for baselines. The
running epoch is fixed to 100. We implement the proposed
model using Pytorch [32] and run it on Titan RTX GPUs.
We run each experiment 5 times and report the mean values
with standard deviation.

D. Additional Experiments
D.1. Additional Diversity Measures

In Figure 5, we present a heatmap showing the pairwise
diversity of BBBP.



Figure 5. Diversity metrics among labeling functions on BBBP: Disagreement (left), Double Fault (center), Double Correct (right). Each
cell in the matrix denotes the coverage of training instances, marked by color intensity, where both molecular labeling functions i and j
label the same example.

D.2. Additional Experiment with Fewer Labeled
Examples

In Figure 6, we plot test auc curves for the other datasets
in the molecular property prediction experiments.

D.3. Influence of the Labeling Ratio

Q: Whether our proposed framework MDP delivers the
superior accuracy compared with baseline models on
the different labeling ratio? Yes, we examine it below.

▷ Comparison with baseline models. We vary the la-
beling ratio of training data on BBBP, BACE, SIDER, Clin-
Tox and Tox21 to evaluate the effectiveness of MDP and
collect the comparison results in Table 4. Different label-
ing ratio influences the number of labeled molecule data
sampled from the training set. As seen from the Table 4,
❶ the performance of all models generally improves when
the number of labeling ratio increases, which illustrates that
utilizing more available labeled data can efficiently boost
the performance. ❷ Compared with all baselines, MDP
consistently achieves the best results across all datasets.
The experimental results demonstrate that increasing the
amount of manually labeled molecule data does not com-
promise the performance of MDP when compared to other

baselines.

D.4. Labeling Function Type Ablation.

Q: Whether it is beneficial to generate multiple weak su-
pervision signals combing various domain knowledge?
We test the predictive performance using the four molecule
datasets to identify the impact of different types of labeling
functions:

• Graph Kernel (GK): Assigning pseudo-labels for un-
labeled graphs according to the similarity computed by
graph kernel method.

• Molecular Fingerprint (MF): Assigning pseudo-
labels for unlabeled graphs according to the molecular
fingerprint similarity.

• Structure-based (SB): Assigning pseudo-labels for
unlabeled graphs according to the difference of statis-
tical structural properties.

We show the experimental results in Table 5. We see that ❶
combining different types of labeling functions can always
outperform using only one type of labeling function. The



Table 4. Test AUC performance of different methods on five molecular prediction benchmarks with various amounts of labeled data. The
best results are in bold and the second best results are underlined.

Method
BBBP BACE SIDER ClinTox Tox21

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

GCN 0.503±0.019 0.582±0.015 0.453±0.019 0.547±0.007 0.498±0.003 0.517±0.004 0.485±0.006 0.526±0.007 0.544±0.012 0.609±0.005

GAT 0.506±0.005 0.592±0.009 0.460±0.017 0.539±0.021 0.523±0.001 0.544±0.006 0.489±0.007 0.514±0.030 0.553±0.004 0.616±0.006

GraphSAGE 0.511±0.009 0.566±0.013 0.464±0.009 0.531±0.009 0.520±0.003 0.552±0.006 0.473±0.022 0.541±0.008 0.539±0.002 0.607±0.008

GIN 0.514±0.007 0.557±0.025 0.499±0.027 0.576±0.032 0.505±0.005 0.559±0.006 0.457±0.015 0.503±0.021 0.554±0.008 0.613±0.017

Pseudo-labeling 0.547±0.013 0.596±0.031 0.478±0.011 0.601±0.014 0.514±0.007 0.566±0.018 0.519±0.024 0.584±0.030 0.593±0.015 0.627±0.020

Self-training 0.539±0.014 0.602±0.023 0.527±0.010 0.619±0.019 0.508±0.006 0.553±0.010 0.528±0.018 0.594±0.019 0.588±0.017 0.637±0.024

infomax 0.540±0.037 0.603±0.009 0.515±0.015 0.574±0.044 0.529±0.006 0.530±0.004 0.542±0.025 0.576±0.034 0.570±0.008 0.629±0.004

contextpred 0.443±0.070 0.600±0.018 0.544±0.048 0.577±0.017 0.513±0.003 0.530±0.003 0.473±0.030 0.502±0.009 0.585±0.037 0.644±0.006

masking 0.464±0.006 0.595±0.006 0.554±0.015 0.608±0.026 0.488±0.012 0.527±0.007 0.532±0.016 0.539±0.023 0.592±0.009 0.653±0.004

edgepred 0.573±0.019 0.580±0.009 0.566±0.032 0.603±0.021 0.497±0.010 0.529±0.007 0.510±0.041 0.530±0.014 0.579±0.014 0.647±0.007

GraphLog 0.522±0.020 0.580±0.011 0.470±0.015 0.612±0.021 0.524±0.007 0.567±0.005 0.516±0.019 0.578±0.036 0.589±0.007 0.640±0.005

perturb edge 0.564±0.013 0.571±0.017 0.514±0.030 0.594±0.014 0.520±0.008 0.542±0.007 0.561±0.006 0.556±0.037 0.597±0.011 0.625±0.003

drop node 0.525±0.015 0.564±0.013 0.526±0.015 0.568±0.017 0.510±0.012 0.497±0.008 0.530±0.022 0.525±0.020 0.572±0.009 0.608±0.007

subgraph 0.539±0.018 0.525±0.023 0.535±0.010 0.582±0.019 0.498±0.009 0.520±0.006 0.445±0.015 0.505±0.043 0.589±0.009 0.652±0.013

Our 0.585±0.027 0.619±0.022 0.602±0.021 0.636±0.008 0.532±0.032 0.570±0.023 0.573±0.030 0.615±0.025 0.649±0.009 0.671±0.008

Figure 6. Plot of increasing labeling sample coverage (x-axis), v.s., accuracy (y-axis) using test curves.

reason behind this is that different types of labeling func-
tions complement each other, effectively generating high-
quality pseudo-labels without requiring human labeling ef-
fort.

D.5. Adapting MDP to Different Backbones.

Q: Whether MDP can still perform well when changing
the backbones? We equip several state-of-the-art GNN
models, i.e., GCN, GAT, GraphSAGE and GIN with MDP
on five datasets (BACE, BBBP, ClinTox, SIDER, Tox21)
for illustrating that MDP can be adapted to different back-



Table 5. The effect of different labeling function types on molec-
ular property prediction tasks.

LF Type BACE BBBP ClinTox SIDER

GK 0.576±0.026 0.565±0.035 0.513±0.072 0.526±0.018

MF 0.618±0.022 0.581±0.035 0.584±0.029 0.577±0.008

SB 0.575±0.035 0.526±0.018 0.456±0.042 0.501±0.028

GK+MF 0.625±0.028 0.604±0.021 0.611±0.019 0.609±0.014

GK+SB 0.608±0.039 0.589±0.037 0.577±0.054 0.523±0.025

MF+SB 0.615±0.034 0.597±0.025 0.591±0.045 0.599±0.027

GK+MF+SB 0.632±0.023 0.618±0.011 0.615±0.043 0.613±0.018

Table 6. Test ROC-AUC performance of MDP on five molecular
prediction benchmarks with different backbones.

Methods BACE BBBP ClinTox SIDER Tox21

GCN 0.488 0.509 0.513 0.455 0.525
MDPGCN 0.616 0.621 0.607 0.582 0.631

GAT 0.532 0.519 0.514 0.450 0.533
MDPGAT 0.611 0.606 0.598 0.587 0.636

GSE 0.504 0.522 0.517 0.440 0.520
MDPGSE 0.609 0.614 0.587 0.591 0.625

GIN 0.497 0.517 0.571 0.433 0.486
MDPGIN 0.632 0.618 0.613 0.615 0.653

Figure 7. Hyper-parameter sensitivity analysis of MDP.

bones. In Table 6, we make the following observations:
MDP adapts well to the four widely-used GNNs and im-
proves them by a large margin on five datasets. For ex-
ample, the performance that MDPGCN achieves are 0.616,
0.621, 0.607, 0.582, 0.631 in AUC on five datasets, which
are 0.128, 0.112, 0.094, 0.127, 0.106 higher than the GCN
model, respectively. Experimental results indicate that
MDP does not rely on any specific architecture, and it serves
as an effective plug-in module for different GNN models.

D.6. Sensitivity Analysis

Q: How is the sensitivity of MDP to the tuning parame-
ter λ? We examine the sensitivity of the hyper-parameter
λ, which controls the weight between labeled and unlabeled
loss. Figure 7 illustrates the performance change under dif-
ferent value of λ of MDP with BACE and BBBP datasets.
Notably, the performance on the BACE dataset shows con-
tinuous improvement in validation as the parameter λ in-
creases, affirming the efficacy of incorporating unlabeled

data. However, excessive emphasis on the unlabeled loss,
as indicated by further increases in the parameter λ, can in-
troduce noise into the probabilistic labels, which has a neg-
ative impact on the performance of the classification model.
Similar trends are observed with the BBBP dataset.
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