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Please refer to our project page for video results.

A. Additional Implementation Details
We utilized TensoRF-VM-48 [2] as our 3D scene represen-
tation. The number of vector-matrix components is set to
Rx,1 = Rx,2 = 4, Rx,2 = 16 (where x ∈ c, σ,∆), ensur-
ing all three grids have the same number of components.
For modeling appearance and deformation fields, we em-
ployed two-layer small MLPs as feature decoding functions
for each component. The intermediate channel dimension is
set to 128 for colors, consistent with the original TensoRF,
and 32 for deformation fields.

During the style transfer, we also implemented deferred
back-propagation [9] for memory-efficient training. The
loss function comprises the proposed style loss (Eq. 4 in the
main paper), along with the content loss (i.e., Lcontent =
l2(Frender, Fcontent)) to control the level of stylization.
Here, Frender represents the extracted VGG feature from
the rendered RGB image, and Fcontent is that from the orig-
inal training image. We maintained the gradient flow from
the content loss to the volume density to enable indirect con-
tent preservation in both appearance and shape. The scale
factor applied to the content loss is set to 5e− 3, while that
for the style loss is set to 1. Optimization was performed
over 500 iterations with a batch size of 1, and training can
be completed in 2 to 3 hours on a single V100 GPU with
32GB of memory.

For the style images, we downloaded them online and es-
timated their depth maps using a zero-shot depth estimation
network [1].

To stylize Panoptic Lifting [6] on the ScanNet dataset,
we utilized the authors’ pre-trained model and incorporated
deformation fields to apply our proposed methods.

Patch-wise optimization. As mentioned in the main pa-
per, we utilized the conv2 and conv3 blocks of VGG-16
for computing the style loss. In the original nearest neigh-
bor loss [3], the sizes of different blocks were reduced by
bilinear downsampling to match them with the spatial reso-
lution of conv3, allowing for nearest matching to be per-
formed independently for each block. However, we identi-
fied two minor issues with this approach: 1) The downsam-
pling operation tends to lose detailed local shape informa-
tion due to the sampling of sparse locations; 2) Performing
independent matching for multiple layers can result in the
generation of inaccurate and overlapping patterns.

To address the first problem, we applied different strides
for the patchwise scheme. Our patch-wise optimization can

be straightforwardly implemented by the unfold opera-
tion in PyTorch [5]. For instance, given that the spatial res-
olution of the conv2 ∈ Rh

2 ×
w
2 ×c block is twice that of

the conv3 ∈ Rh
4 ×

w
4 ×c′ , we unfold them with a stride of 4

for the former and 2 for the latter. This adjustment matches
their spatial resolutions to h

8 ×
w
8 . Here, the channel dimen-

sion becomes c× k2 and c′ × k′
2, where k denotes the size

of each patch. Through this scheme, we are able to more
effectively align each patch in the content feature with the
style feature, preserving intermediate information without
loss.

For the second problem, we do not perform matching in-
dependently. Instead, we first identify the closest pair using
the output of conv3 and then apply the identical pixel lo-
cations of these pairs for optimizing conv2. This approach
ensures that the losses from multiple blocks coordinate to
transfer the same parts of the style image to the content
scene. Such coordination prevents patterns from overlap-
ping and contributes to the formation of complete and clear
shapes. While concatenating the features from both blocks
is an alternative since they share the same resolutions, this
method significantly increases the computational load for
nearest matching without yielding a meaningful difference
in results.

Perspective style augmentation. The human visual sys-
tem perceives depth through various cues present in im-
ages [7, 8]. We have developed perspective augmentation
based on well-defined design principles derived from these
cues. While rendering a video of the stylized scene easily
conveys depth via motion parallax, achieving a natural and
structured stylization in still images requires the incorpora-
tion of several additional effects.

1. Diminishing scale. As we described in the main pa-
per, the major effect of the proposed augmentation is to vary
the size of style patterns depending on their distance, so that
the sizes diminish as the surfaces become farther away.

2. Atmospheric perspective. To maximize the percep-
tion of depth, objects that are closer should appear clearer
than those that are farther away. In the context of our styl-
ization scheme, this implies that closer objects should ex-
hibit higher intensity/contrast, vivid colors, and complete
and accurate patterns and shapes. However, this principle
conflicts with our proposed patch-wise optimization, which
primarily focuses on transferring the clear and complete
patterns of style images. In other words, while the patch-
wise optimization allows for the transfer of clean and pre-
cise patterns from style images, this does not always equate
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to an “aesthetically better” outcome.
To improve this technique, we vary the patch size based

on depth. The pixels assigned to the closest bin, B1, are
stylized using a loss computed with a larger patch defined
by dilation, while the pixels in the rest of the bins are styl-
ized with a smaller patch that does not use dilation.

Simultaneously, the background colors should contain
less intensity and less contrast. In terms of style transfer,
a shallower block tends to produce colors with high inten-
sity and contrast, whereas a deeper block yields the oppo-
site effect. Therefore, during the loss computation, the pix-
els in the closest bin, B1, are stylized using features from
both conv2 and conv3 blocks. In contrast, the pixels in
the remaining bins are stylized only with features from the
conv3 block to achieve these effects.

3. Overlapping. Object boundaries play a crucial role
in providing cues for overlapping. When objects are par-
tially overlapped by others, the relative distance between
them becomes discernible. However, as stylization meth-
ods strive to transfer accurate patterns (via patch-wise opti-
mization), there can be significant and strong alterations to
the original shape. This tends to distort the original con-
tent and overlay it with style patterns. Such effects can
obscure object boundaries that are defined by color differ-
ences, even though shape boundaries may still be present.
To counter this, reducing the patch size for farther sur-
faces also helps in maintaining detailed structure and ob-
ject boundaries, thereby enhancing depth cues provided by
overlapping objects.

As a result of this combined approach, clearly improved
results are observable, as demonstrated in Fig. 8 of the main
paper. Detailed ablation studies and analysis are provided
in the following section.

B. Experiments

B.1. Additional Ablations

In this section, we conduct more detailed ablation studies
of our contributions, including the specifics mentioned in
Sec. A.

Depth map as a style guide. In Fig. 1, we compare styl-
ization results with and without the depth style guide SD to
demonstrate the benefits of stylizing geometry and using a
depth map as a style guide.

In Fig. 1 (a), we freeze the geometry update and only
update the appearance based on the RGB style image, Srgb.
Without updating the geometry, the scene cannot be fully
stylized to transfer the exact patterns from the style image.
It replicates some patterns on the large surfaces, but the
detailed structures, such as leaves, maintain their original
form, which does not accurately represent the given style.

In Fig. 1 (b-1) and (b-2), we enable geometry updates.
Although these examples use a style guide as an RGB im-
age, Srgb, the gradient flow from the style loss is con-
nected and capable of updating volume density. Compared
to Fig. 1 (a), the details on the leaves better reflect the
style patterns as the geometry updates, and the edges on
the depth maps slightly become more block-shaped. This
demonstrates that updating the geometry enhances the ex-
pressiveness of stylization. However, the geometrical guid-
ance from Srgb is limited, so it’s not sufficient to fully styl-
ize the geometry. As shown in the depth maps, most of the
surfaces do not provide any cues from the style image, indi-
cating that the patterns in the rendered RGB are merely hal-
lucinations drawn by changing appearance. Additionally,
the right parts of the leaves are removed and disconnected,
sometimes failing to maintain the original content when up-
dating geometry without a proper geometric guide. This is
one of the reasons why previous works [9, 10] disable ge-
ometry updates and focus solely on stylizing appearance.

In Fig. 1 (b-1), we disable our patch-wise optimization
but enable it in Fig. 1 (b-2). We observe that with better
and more accurate shape of patterns, our patch-wise strategy
proves effective in producing accurate shapes even when
exclusively using an RGB image as a style guide.

In Fig. 1 (c), we enable geometry updates and add the
style guide from the depth map, SD. Compared to the pre-
vious examples, the shape more accurately reflects the style
patterns, overall diversity increases, and the content struc-
ture is maintained without any areas being removed.

Patch-wise optimization. In Fig. 2, we present a more
detailed comparison of our patch-wise optimization, as dis-
cussed in Sec. A. It’s important to note that Fig. 2 (a) corre-
sponds to the top figure in Fig. 7 of the main paper, while
Fig. 2 (d) aligns with the bottom figure of Fig. 7 (main pa-
per).

In Fig. 2 (a), without the implementation of patch-wise
optimization, the patterns are found to be imperfect and un-
clear. This is primarily because many surfaces fail to prop-
erly exhibit patterns from the style image, merely changing
colors without forming distinct patterns, attributable to their
limited receptive fields.

In Fig. 2 (b), we apply our proposed patch-wise op-
timization and perform nearest matching of two specific
VGG blocks, namely conv2 and conv3, independently.
Each block processes different parts of the style image and
independently stylizes colors and shapes based on their
closest locations. As a result, despite the application of
patch-wise optimization, the overall patterns still appear in-
complete and overlapping.

In Fig. 2 (c), we ensure the alignment of matched loca-
tions across each block. As explained in Sec. A, the process
begins with the nearest matching of conv3, where we iden-



tify the closest pairings between content features and style
features. Subsequently, rather than performing matching
with conv2, we employ the closest pairs from conv3 to
optimize feature distances for conv2. This coordinated ap-
proach allows both blocks to stylize the content feature us-
ing identical locations from the style image, thereby yield-
ing clearer and more complete patterns.

Finally, in Fig. 2 (d), we achieve an expansion of the
receptive fields by defining local patches with dilation. This
expansion allows each feature to fully capture the patterns
from the style image, facilitating the creation of clearer and
more complete pattern shapes, avoiding the issue of vague
and flat surfaces.

Perspective style augmentation. In Fig. 3, we present a
more detailed comparison of our perspective style augmen-
tation, including verifications of each depth cue mentioned
in Sec. A. Please note that Fig. 3 (a) corresponds to the top
left figure in Fig. 8 of the main paper, and Fig. 3 (c) aligns
with the top right figure in Fig. 8 (main paper). As shown in
Fig. 3 (a), without perspective style augmentation, the over-
all patterns are created with similar size, color intensity, and
level of color contrast. Moreover, as the overall stylization
focuses on creating complete and accurate shapes of style
patterns, the content structure, especially the fine-detailed
geometry, tends to be lost or washed out.

In Fig. 3 (b), we apply perspective augmentation by us-
ing a reduced size of the style image for the farther surfaces,
while the closer surfaces are stylized with a larger size of the
style image. This approach successfully maps smaller pat-
terns to the background while keeping the original size of
patterns for the foreground objects, providing an increased
sense of depth. However, it lacks a naturally structured feel-
ing due to the absence of atmospheric perspective, where
the distant region should appear less clear and less intense
than the closer area.

In Fig. 3 (c), for a more enhanced effect, we also reduced
the patch size for computing style loss for the distant sur-
faces to decrease the pattern accuracy in these areas. Addi-
tionally, the loss for the distant areas is computed using only
the conv3 block, to achieve lower color intensity and con-
trast. Consequently, the overall stylization focuses on trans-
ferring complete shapes and clear colors of larger patterns
for the foreground areas, while making the distant surfaces
less clear. This approach provides a more enhanced feeling
of depth through the size of shapes and color differences de-
pending on surface distance. Moreover, the detailed struc-
ture is better maintained, providing improved differentia-
tion between surface boundaries due to overlapping.

B.2. Interpolation of Deformation Fields

By utilizing deformation fields and combining them with
the original grid, we can implement a smooth interpolation

from the original 3D scene to the stylized scene. This is
achieved by multiplying a scale factor s, which can range
between [0, 1], with ∆x, allowing us to smoothly inter-
polate the geometry between the original and the stylized
shapes.

For the appearance, we can further utilize the original
color grid, denoted as Gc, in conjunction with Gc′ , which is
the stylized color grid. When a sample point xi is specified,
the color at this point is defined by the following expression:

ci = (1− s) · Gc(xi) + s · Gc′(xi + s ·∆xi) (1)

When s = 0, the resulting render is identical to the orig-
inal scene. Conversely, when s = 1, the rendered scene
is fully stylized. By gradually changing s from 0 to 1, we
are able to render a smooth interpolation between these two
states.

The results are available at our project page.

B.3. Partial Stylization

As mentioned in the main paper, it is possible to partially
stylize a 3D scene, targeting specific classes as well as in-
dividual objects. In the main paper, due to space limita-
tions, we demonstrated stylization focused only on specific
classes. In Fig. 4 and Fig. 5, presented here, we provide
additional examples of stylizing target objects.

C. Additional Qualitative Results
In Fig. 6, Fig. 7 and Fig. 8 we provide more stylized results
of trex, fern, and horns scenes in the LLFF dataset [4].
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Figure 1. Detailed ablation studies on using a depth map as a style guide.



Figure 2. Detailed ablation studies of patch-wise optimization.



Figure 3. Detailed ablation studies and analysis of perspective style augmentation.



Figure 4. Qualitative results demonstrating partial stylization of the scene based on target classes or specific individual objects.

Figure 5. Qualitative results demonstrating partial stylization of the scene based on target classes or specific individual objects.



Figure 6. Qualitative results of the trex scene from the LLFF dataset.



Figure 7. Qualitative results of the fern scene from the LLFF dataset.



Figure 8. Qualitative results of the horns scene from the LLFF dataset.
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