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Figure 1. Object Meshes from Symmetric and Partially Symmetric Shape Categories. Glass (a), bottle (b), can (c), and tube (d)
categories are the categories with distinctive symmetry axes. We align the y axis to the axis of symmetry. If one surface is larger in area
than another side, the x-axis is aligned in the perpendicular direction to it. All the objects are rendered in the same scale to highlight the
size variance among the same category.

1. Object Meshes and Orientation

The HouseCat6D dataset features 194 highly diverse ob-
jects from 10 household object categories with different tex-
tures, sizes, and shapes. In this section, we show the meshes
of the objects in each category and the descriptions of their
orientation.

Glass HouseCat6D aligns the symmetry axis with the y
axis for the (partially) symmetric objects. Glass objects in
our dataset are fully symmetric around y axis in accordance
with [12] who also align y axis and symmetry axis. The x
and z axes serve as any orthogonal axes around the y axis as
exemplified in Fig. 1 (a).
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Bottle Unlike the glass objects, bottle objects in our
dataset are sometimes not fully symmetric (i.e. frontal sur-
face is wider than the side) as in Fig. 1 (b). In this case, we
define the x axis perpendicular to the surface of larger area.

Can Similar to the bottle objects, can objects in our
dataset sometimes are not fully symmetric (i.e. some cans
are more square and one side is wider than the other side)
as shown in Fig. 1 (c). Like the bottle objects, we define the
x axis perpendicular to the wider side.

Tube Tube objects in our dataset are partially symmetric
in shape, such that one side is round at the end while flat
on the other side as shown in Fig. 1 (d). As in the can and
bottle category, we define the x axis perpendicular to the
wider side.

Teapot In general, teapots have the shape of one (par-
tially) symmetric body with a handle and tip where the liq-
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Figure 2. Object Meshes from (Partially) Symmetric Objects With a Handle. Teapot (a) and cup (b) are the categories with objects that
include a (partially) symmetric body with handle. We align the y axis with the symmetry axis of the body and the x axis with the direction
from handle to the the other side of the body. All the objects are rendered in the same scale to highlight the size variance among the same
category.

Figure 3. Object Meshes from Flat Shape Categories. Shoe (a), remote (b) and cutlery (c) are the categories with long, flat and non-
symmetric shape. We oriented such shapes in a way that the y axis points in the direction of the upper side and x in the direction of the
front side. All the objects are rendered in the same scale to highlight the size variance among the same category.

Figure 4. Object Meshes for Box category. Unlike the other categories, the sides of the box are rather defined by their texture. To allow
networks to generalize in this category, we orient the meshes by their side length. We set y, x, z as direction of first, second and third longest
side. All the objects are rendered in the same scale to highlight the size variance among the same category.

uid comes out. In our dataset, we use the y axis for the
direction of the symmetric body and x axis for the direction
from the handle to the tip as shown in Fig. 2 (a).

Cup For the cup category, we only use cups with handles
that have the shape of one symmetric body with a handle.
Thus, similar to the Teapot category, we align the y axis to
the direction of the symmetric body and x with the direction
from the handle to the other side of the body as shown in
Fig. 2 (b).

Shoe Shoes, in general, have a long, flat and non-
symmetric shape. For this category, we use only the right
side of the slipper as illustrated in Fig. 3 (a). We oriented
shoes such that their upper side points in the direction of the
y axis and the front side points in the direction of the x axis.

Remote Remotes have relatively flat bodies with long and
non-symmetric shapes, as shown in Fig. 3 (b). Similar to
the shoe category, remotes are oriented such that their upper
side points in the direction of the y axis, and the front side
is is oriented in the direction of the x axis.

Cutlery Although the texture of the reflective surface
makes a clear distinction between the cutlery category
to any other category, the shape itself shares similarity
with shoe and remote category. It is flat, long, and non-
symmetric (Fig. 3 (c)). Thus, it shares the same orientation
scheme, the upper side is aligned with the y axis and the
front side points in x direction.

Box Unlike other categories, the sides of the box are de-
fined by their texture. Even a human observer has to inspect
the textures on multiple sides of a box to judge which side



Figure 5. Tracking System Evaluation. We use a robotic arm to evaluate the quality of the tracking system. We first (a) co-calibrate
the robot and the tracking system such that they share a common reference frame and then (b) run an example trajectory to calculate the
difference between the trajectory obtained from the robot and the tracking system for error evaluation.

is the front or upper side etc. To make it easier for networks
to generalize the orientation of boxes, we orient them by the
length of the sides independent of their textures. We use y,
x, z for the direction of the first, second, and third longest
side as shown in Fig. 4.

2. Hardware Details
In this section, we provide detailed information about the
hardware we used for the dataset acquisition.

3D Scanning As shown in Sec.1, our dataset comprises
of 10 household categories such as bottle, box, can, cup,
cutlery, glass, remote, shoe, teapot, tube. To ensure the high
quality meshes we use 3D scanner equipped with turn table
and structured light stereo system (EinScan-SP 3D Scanner,
SHINING 3D Tech. Co., Ltd., Hangzhou, China), which
produces single shot accuracy of ≤ 0.05 mm in a scanning
volume of 1200 × 1200 × 1200 mm3. For photometrically
challenging categories like cutlery and glass, self-vanishing
3D scanning spray (AESUB Blue, Aesub, Recklinghausen,
Germany) is applied prior to the scanning.

External Tracking System. To ensure broad viewpoint
coverage with high-quality annotation without using a
checkerboard, we utilize an external tracker system com-
posed of 4 (2x Stereo) ARTTRACK2 cameras (Advanced
Realtime Tracking GmbH & Co, Germany) with built-in in-
frared flash (NIR, 880 nm) and maximum tracking distance
of 4.5 m for both object pose and camera pose annotation.

Cameras. Our multi-modal dataset comprises two main
modalities: Polarimetric RGB image and active stereo
depth. A Phoenix 5.0 MP Polarization camera with Sony

IMX264MYR CMOS Polarsens (PHX050S1-QC, LUCID
Vision Labs, Inc., Canada) sensor is used to produce the
RGB+P images, and Intel RealSense D435 (RealSense
D435i, Intel, USA) acquires the depth maps. We specifi-
cally choose D435 as the depth sensor over Time-of-Flight
sensors as active stereo depth provides, in general, more
robust depth on photometrically challenging material [8].
To ensure the best synchronization between the two cam-
eras, we use an external tracking signal provided by a Rasp-
berry Pi (Raspberry Pi Foundation, United Kingdom) with
GPIO output and later use the trigger signal as the times-
tamp of images for post-ex synchronization correction with
the tracking system.

3. External Tracking System Evaluation

As mentioned in Sec. 3.2 in the main paper, we evaluate
our IR-based external tracking system ARTTRACK2 via a
robotic arm. We use a KUKA LBR iiwa 7 R800 (KUKA
Roboter GmbH, Augsburg, Germany), a 7 DoF robotic arm
certified for industrial use to provide ±0.1 mm positional
reproducibility, as the device to produce the ground truth
pose for the comparison. In this section, we describe the
detailed steps for the evaluation.

3.1. Robot-Tracker Co-Calibration

The first step to evaluate the tracking system with a robot
is to co-calibrate the base of the robot and the tracking sys-
tem. For this, we attach the calibrated IR tracking body on
the robotic End-Effector (EE) as shown in Fig. 5 (a). We
then acquire one trajectory from two different coordinate
bases, one from the Robot base and the other one from the
Tracker base. Similar to hand-eye calibration, we extract
the static transformation between the two trajectories using
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Figure 6. The model of the parallel-jaw gripper, whose finger
depth is 0.04m, maximum grasping width is 0.08m, and the dis-
tance between the gripper base and the center of two fingers’ base
is 0.04m.

the method of Horn [6]. In this case, the static transforma-
tion matrix is the transformation between Tracker Base and
Robot Base (marked red in Fig. 5 (a)).

3.2. Trajectory Error Evaluation

After co-calibration, we keep the tracking body on the
robotic EE and make an evaluation trajectory that replicates
the trajectory in one of the scenes. We repeat the trajectory
twice, once with the robot stopping at every capturing po-
sition and once with the robot not stopping during the pose
capture. The first trajectory serves as an evaluation for the
tracking system accuracy in the static case, and the later tra-
jectory serves as an evaluation in the dynamic case. As it is
possible to obtain the pose of the tracking body from both,
robot and tracking system, in the same coordinate frame us-
ing the co-calibration matrix, the error of the tracking sys-
tem is calculated as the pose difference between the pose
from the robotic arm and the pose from the tracking system
(Fig. 5 (b)). We measure an error of 0.67 mm / 0.12◦ in the
static case and 0.92 mm / 0.16◦ in the dynamic case.

4. Grasping Annotation Pipeline

In this section, we detail the grasping annotation process.
The pipeline is illustrated in Fig. 7. For each scene, we first
obtain the scene by reconstructing the background (e.g. ta-
ble) with multiview depth and displacing the object meshes
on the top of the background mesh according to their pose.
After successfully reconstructing the scene, the meshes are
sent to the antipodal sampling module to generate grasp
candidates (Fig. 7.a). Then Isaac Gym [11] sorts out the
good grasps among all candidates for each object by check-
ing if grasping an object failed. Successful grasps are in
green, while failed grasps are in red (Fig. 7.b). Then ob-
jects are projected to the tracker base along with their asso-
ciated grasps to check the collisions and collided grasps are
removed from the original ones. Finally, we project these
checked grasps to each image base to obtain the ultimate
dataset. (Fig. 7.c).

Figure 7. The pipeline of the grasp annotation process. We
show downsampled grasps for better visualization and show the
full annotation at the end for the final performance.

4.1. Scene Mesh Acquisition

To annotate the correct grasping position with collision in-
spection, it is important to have a full mesh of the scene,
which contains objects as well as their platform where the
object are placed, such that physical simulation can filter
out the grasping points which leads collision of gripper
on the other objects and the background. For the objects,
we displaced their meshes in the scene with the annotated
poses. On the other hand, for the platform, it is not possi-



Figure 8. Example of Mesh Annotation and Its Corresponding
RGB Image. We annotate the scene by reconstructing the plat-
form and displacing the objects’ meshes with their pose. Note that
we do not reconstruct the other parts of the background such as the
wall as they are not necessary for grasping simulation.

ble to do the same way as the background is not scanned
prior. Instead, we reconstruct the scene with the depth im-
ages with the corresponding camera poses using truncated
signed distance fusion and hole followed by manual hole
filling with Artec Studio 17 Professional (Artec3D, Sen-
ningerberg, Luxembourg). An example of the 3D mesh of
objects with the reconstruction of the platform is shown in
Fig. 8 with an example of an RGB frame from the corre-
sponding scene.

4.2. Antipodal Sampling

Antipodal sampling is a wide-used technique for grasp pose
generation, which has been investigated in several previous
works [4, 10, 14]. Given an object mesh, this scheme first
samples an arbitrary point on the mesh surface as the initial
contact point (①) together with a line within a range around
the surface normal. The sampling threshold µ = tan(α)
with the friction angle α restricts the range at which rays
can be emitted. A second point (② / ③) is found as the in-
tersection of both mesh and line. Then reject sampling is
used to prune the point whose line is not inside the friction
cone (③) or whose distance from the initial point is beyond
the max width of the gripper model. A successfully sam-
pled grasp Gobj is then derived by taking the center point
between two contact points (①②) and a randomly sampled
rotation around the line. Here, in this work, we set µ as 0.4.
The end-effector model we use is a Franka Emika parallel-
jaw gripper, as shown in Fig. 6.

4.3. Simulation Inspectation

After obtaining grasp samples, we use a physical engine,
namely Isaac Gym, to inspect grasps which are successful.
For each object, we parallelly create the same number of
simulation environments as of grasps belonging to the ob-
ject. We inspect whether these grasps are successful by cal-
culating the distance between the gripper and the centroid
of the object model 15 seconds after the finger closure de-
fined by individual grasping width. If the distance is less

Figure 9. Occlusion Comparison between NOCS [12] and
HouseCat6D. HouseCat6D covers more occlusions as well as
more frequency on the occlusion, which makes the dataset more
challenging as well as closer to the real-life scenario.

than 0.1m, we label this grasp as a successful one and vice
versa.

4.4. Grasp Projection

This is a two-stage procedure. We retrieve objects in each
scene and replicate the first-stage projection for all objects
in the scene, where we transform the grasps belonging to an
object to the tracker base according to the object pose and
check their collisions with the surrounding meshes, includ-
ing other objects and the background. The collision check-
ing module is from the public library Trimesh. Then we
project all grasps to every image frame to obtain the final
dataset, utilizing the camera trajectory recorded under the
tracker base.

5. Occlusion Analysis
When it comes to detecting the objects and estimating the
pose, occlusion and visibility take important roles. In our
dataset, we provide the visibility ratio of each category in
the scene per frame. The visibility is calculated as follows.
Firstly, we render the mask of an object with a given pose,
one object per time to prevent occlusion between categories,
and count number of pixels in the mask M cat

full. Then masks
of categories are rendered again but all together so that oc-
clusion is accounted, followed by counting the number of
pixels on each object M cat

occluded, which now has fewer pix-
els due to occlusion from other objects. Occlusion ratio is
calculated as M cat

occluded / M cat
full, which then averaged over

all frames and scenes. We show the ratio on our dataset and
as well as on NOCS dataset [12] in Fig. 9 to emphasize the
difference in terms of the occlusion in the dataset.

6. Evaluation on Rotation Translation Metric
In Tab. 1, we show the evaluation of baseline on rotation and
translation error metric with a set of thresholds: 10°5cm.
Similar to 3D IOU, NOCS [7] performs significantly worse

https://trimsh.org/trimesh.collision.html

https://trimsh.org/trimesh.collision.html
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Figure 10. An example of a real-world grasping trial. (a) 2D
grasp keypoints in the camera view. (b) 3D grasps visualization,
with the best in green and the rest in purple. (c) Hardware setup in
the third-person view.

Table 1. Quantitative Evaluation on Rotation and Translation
Metric. For rotation and translation metric, we show average ac-
curacy over all categories.

Threshold NOCS [12] GPV-Pose [3] FS-Net [1] VI-Net [9]

10◦5cm 4.8 22.7 21.6 29.1

in our dataset compared to other baselines. As mentioned
in the main paper, we suspect this is due to issue with inac-
curate depth being used for lifting NOCS [7] prediction in
2D into 3D. On the other hand, geometric guided approach
such as GPV-Pose [3], FS-Net [1] and VI-Net [9] has bet-
ter performance with ground truth detection mask. Espe-
cially, with better parameterization on rotation, VI-Net [9]
performs significantly better compared to other geometric
approach, GPV-Pose [3] FS-Net [1].

7. Cross-Dataset Evaluation
HouseCat6D provides depth data from D435 solely. Thus,
it is important to show that methods trained on House-
Cat6D can generalize with other depth information, as
there is a domain gap between an active stereo (D435)
and a D-ToF/LiDAR (L515) sensor, as the principle of
depth measurement is different. (i) To quantitatively
evaluate the category-level pose estimation gap, we test
HouseCat6D-trained VI-Net on 11 sequences of the HAM-
MER dataset [8], which is designed for depth estimation
and provides depth data for both cameras. We managed to
obtain ground truth object poses from MonoGraspNet [15]
and report the same metrics as the above ones, with 5◦ 2 cm
being the average.

Depth Bottle Can Cup Cutlery Glass Avg. 5◦ 2 cm

D435 28.8 49.9 72.1 35.1 83.6 53.9 3.8
L515 56.6 17.6 92.7 38.7 33.6 47.8 6.6

We show that, for objects such as bottles and cups, the L515
provides better results than the D435, even though the net-

L515 GTD435

Glass (symmetrical)

Cup (asymmetrical)

(a) Pose estimation on HAMMER

2D view

3D view

(b) Grasp inference on L515

Figure 11. Zero-shot pose and grasp inference. (Zoom for de-
tails)

work is trained with D435. This is because depth quality
is better when measuring these categories with L515 [8].
However, unlike active stereo, ToF cameras, including the
L515, produce depth maps with strong artifacts on photo-
metrically challenging material, such as transparent and re-
flective objects [8], resulting in severely degraded perfor-
mance on the glass, cutlery, and cans. We show some visu-
alization examples when VI-Net is equipped with different
depth data in Figure 11.a.

8. Polarization-Based Pose Estimation
There is no such obvious method for category-level pose
estimation in the community. Although PPPNet [5] proves
that polarization indeed helps in the instance-level task, the
lack of a large-scale category-level dataset with polariza-
tion modality has so far prohibited research in this direc-
tion. To promote this research path, we train a baseline upon
VI-Net [9] with additional physical priors calculated from
four polarization images, such as DOLP (H ×W × 1) and
AOLP (H ×W × 1), that are concatenated on the RGB im-
age along the last dimension to have multi-modality input
(H×W ×5). Then, we feed it to the VI-Net architecture to
regress rotations, translations, and sizes. The baseline can
be found on the Github . We report 5 categories with better
results on IoU50. We show that including polarization sig-

Method Metric Bottle Can Remote Cutlery Glass Avg.

VI-Net IoU50
79.6 67.0 17.1 76.4 93.7 66.8

VI-Net w/ pol 80.2 79.9 43.4 76.8 94.3 74.9

VI-Net
5◦ 2 cm

38.9 9.6 1.3 0.2 28.9 15.8
VI-Net w/ pol 32.5 13.1 7.5 0.7 30.0 16.8

nificantly improves the performance on short objects, such
as cans and remotes, while marginal performance gains can
be seen for challenging categories, such as cutlery and glass.
Inspecting the transformation metric 5◦ 2 cm provides a
similar conclusion. Again, it is important to note that this
area is under-explored, and this baseline implementation is
intuitive but basic. However, the improvement we show
in this experiment proves the usefulness of the polarization
modality and promotes more research in this direction.

https://github.com/Junggy/HouseCat6D

https://github.com/Junggy/HouseCat6D


Table 2. Ablation Study on Different Input Class-wise evaluation of 3D IoU (at 25%/ at 50%) for VI-Net [9] with different training
setup.

Approach Train Set 3D25 / 3D50 Bottle Box Can Cup Remote Teapot Cutlery Glass Tube Shoe

VI-Net [9]
Full 80.7 / 56.4 90.6 / 79.6 44.8 / 12.7 99.0 / 67.0 96.7 / 72.1 54.9 / 17.1 52.6 / 47.3 89.2 / 76.4 99.1 / 93.7 94.9 / 36.0 85.2 / 62.4
RV 74.2 / 46.8 91.0 / 76.6 59.1 / 23.5 98.9 / 67.2 76.0 / 36.6 59.4 / 34.3 22.7 / 18.8 79.4 / 57.3 97.7 / 85.3 66.3 / 47.8 91.4 / 20.4
RS 67.7 / 35.8 90.1 / 68.7 49.0 / 9.8 96.9 / 53.6 87.2 / 48.5 40.2 / 16.3 28.8 / 15.8 67.4 / 49.0 98.5 / 73.6 86.6 / 7.9 32.4 / 14.9

9. Real-World Grasping
Unlike the experiments in simulation which are conducted
on the available test set, real-world grasping is more chal-
lenging with respect to two facts. First, the objects are more
random and are not included in the dataset, with some of
them even in the unseen categories, which tests the gener-
alization ability of the network. Second, the appearance of
the backgrounds are more complex and the imaging style is
also different since the imagery sensor is different from the
one collecting the dataset, which tests the robustness of the
network.

Hardware Setup We test the trained KGN [2] in real-
world scenarios using a 7-DoF Franka Panda robot with
a parallel-jaw gripper as the end-effector. The sensor
mounted on the gripper base is a RealSense D435 RGB-D
camera. The framework is run on an NVIDIA A4000 GPU.

Implementation Details We randomly select support ta-
bles with unseen backgrounds as the grasping environment.
Then we fix a certain sequence of joint positions for the
robot as the home position where the camera observes the
table from the side, as shown in Fig. 10.c. We select three
types of objects for the test–1) normal objects in the seen
categories, 2) normal objects in the unseen categories, and
3) photometrically challenging objects in the seen cate-
gories, whose grasp success rates are reported in the main
paper. For example, in the first type, we let the robot grasp
a cup, shown in Fig. 10. KGN [2] starts to infer 2D grasp
keypoints on the image (Fig. 10.a), then it utilizes PnP and
3D keypoints shown in Fig. 6 with camera intrinsics to solve
3D grasp poses (Fig. 10.b).

Cross-Sensor Experiment We also test HouseCat6D-
trained KGN [2] with a Franka robot mounting an L515 to
conduct a grasping task. Following the procedure in the
manuscript, we grasp each category in 15 trials and report
the success rate as follows:

Depth Box Cup Glass Remote Unknown

D435 12/15 10/15 11/15 5/15 9/15
L515 10/15 10/15 6/15 7/15 7/15

The results indicate the usefulness of both sensors for the
grasping task with material and depth quality-dependent
performance. In Figure 11.b, we show a glimpse when

KGN infers grasps for a cup. More examples have been
involved in the upcoming supp. video. Among all attempts,
we feel interested in some successful cases of glass grasp-
ing, even if the depth vanishes under L515. This success
might be attributed to KGN’s design, which basically ap-
proaches grasp estimation as multiple instance-level pose
estimation of the gripper. In situations with unreliable depth
data, KGN functions primarily as an RGB-based pose esti-
mation method.

10. Ablation Study
We trained VI-Net [9] on our dataset with different setups,
such as reduced viewpoint coverage of camera (RV), re-
duced number of scenes (fewer objects per category) (RS)
to study the impact of different aspect of the dataset on cat-
egory level 6d pose estimation task. The results are sum-
marized in Tab. 2. For RV and RS setup, we specifically
mimic the coverage of PhoCal [13] by using less number
of scenes (RS) and selecting the subset of camera trajectory
as continuous 250 frames of translation-dominated motion
(RV).

Impact of View VS Scenes Compared to having reduced
viewpoints (RV) during training, reducing the scene (RS)
has a more negative impact on the test evaluation. As the
main task of category-level pose estimation is about gen-
eralizing on the unseen objects of known categories, we
find it beneficial to see more objects and backgrounds even
if the viewpoint is limited. This further highlights the ad-
vantage of our dataset over NOCS dataset [12] and PhoCal
dataset [13] for both the number of scenes and the number
of objects. Furthermore, when both RS and RV are com-
bined, there is a significant drop in the performance, which
gives an advantage of our dataset over PhoCal [13], where
the robotic arm annotations have a clear limitation on the
viewpoint coverage as well as the number of scenes.

11. Dataset Sample
Fig. 12 shows example images of our dataset from all 41
scenes. In Fig. 12, we augment rendered object masks to-
gether with bounding boxes to highlight the quality of our
dataset annotation. Training scenes are augmented with
green, test scenes are augmented with yellow, validation
scenes are augmented with orange color.



Figure 12. Dataset Sample. Our dataset is composed of 41 scenes with high-quality annotations structured in 34 training scenes (green), 5
test scenes (yellow), and 2 validation scenes (orange). We overlay rendered object masks as well as bounding boxes to highlight the quality
of our dataset annotation.
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