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Details on auxiliary text classes: On Charades [6], we
use 97 auxiliary classes: 43 objects, 15 places, 5 people-
counts and 34 atomic-actions. People-count prompts are
manually-selected, whereas the others are already annotated
in the dataset. On Kinetics-400 [1], we use 88 auxiliary
classes: 40 objects, 43 places and 5 people-counts. Atomic-
actions on Kinetics-400 are too diverse to be categorized as
a concise set, and thus omitted. On Kinetics-400, people-
counts are similarly selected, and the others are generated by
prompting ChatGPT3.5 with the set of 400 activity classes.
The auxiliary vocabulary for each dataset is given below.

On Charades [6], we have the following:
Objects: bag, bed, blanket, book, box, broom, chair,
closet, cabinet, clothes, cup, glass, bottle, dish, door, door-
knob, doorway, floor, food, groceries, hair, hands, laptop,
light, medicine, mirror, paper, notebook, phone, camera, pic-
ture, pillow, refrigerator, sandwich, shelf, shoe, sofa, couch,
table, television, towel, vacuum, window.
Places: basement, garage, pantry, recreation room, walk-
in closet, laundry room, stairs, hallway, dining room, entry-
way, home office, bathroom, kitchen, bedroom, living room.
People: no people, one person, two people, three people,
several people.
Atomic-actions: doing nothing, awakening, closing,
cooking, dressing, drinking, eating, fixing, grasping, holding,
laughing, lying, making, opening, photographing, playing,
pouring, putting, running, sitting, smiling, sneezing, snug-
gling, standing, taking, talking, throwing, tidying, turning,
undressing, walking, washing, watching, working.

On Kinetics-400 [1], we have the following:
Objects: bow and arrow, flowers, leaves or tree, com-
puter, bed or baby crib, glass or bottle, dumbbell, treadmill
or gym equipment, trampoline, mechanical bull or roller
skates, bowling ball, cabinet or windows or dining table,
sailboat or jet ski, fishing rod, cleaning supplies, grooming
tools, pool, shoes, toilet, rope or ladder, barbecue grill or
campfire, makeup tools, shovel, laundry or clothes, books or
drawing materials, baseball, basketball or golf club, gym-
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nastics mat, ice skates, dessert, fruits or vegetables, food
items, fire extinguisher, hammer or meat grinder, musical
instruments, board game, sporting equipment, gas pump,
shopping cart, newspaper, animals, car, tractor or bicycle,
rock climbing gear, electric sharpener or shredder.
Places: home, living room, dining room, bathroom,
kitchen, bedroom, backyard or garden, staircase, hair salon,
restaurant, outdoor, mountain or cliff, grass field, snow or
ice, river or sea, sky, gym or fitness center, supermarket,
foundary or workshop, forest, sports field, stadium, court
or arena, massage palor, dance floor or stage, road or side-
walk, swimming pool, restaurant or bar, entrance or door-
way, hospital or emergency room, bowling alley, building
or skyscraper, theatre or auditorium, farm, recording studio
or music room, news room, repair shop, garage, archery
or shooting range, beach, underwater or sea bed, office or
workspace, park, arcade or casino, school or classroom.
People: no people, one person, two people, three people,
several people.

On the selection of datasets: In literature, activity recogni-
tion is considered as the prominent video classification task.
To understand the effectiveness of our video-conditioned text
representations, we tackle a variety of activity recognition
benchmarks. This includes few-shot and zero-shot activity
recognition (on HMDB-51 [2], UCF-101 [7]), short-form
recognition (on Kinetics-400 [1]) and long-form recogni-
tion (on Charades [6]). It is worth noting that Kinetics-400
usually contains single-person activities, whereas Charades
includes multiple people and complex overlapping activities.
Together, these provide a thorough spread of scenarios for
both single-label and multi-label classification. Our evalua-
tion setting is similar to many other prior work which eval-
uate on classification [3, 4, 9], yet extensive as it includes
diverse contexts.

Compute requirement: Token-boosting increases the foot-
print of our model. However, our Video-Head is still
lightweight, requiring minimal additional computations. In
fact, it amounts for only 0.2% (0.5B) of total FLOPs in
B/16 16-frame model (285B), and only 0.1% (0.6B) in
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Model Rich text HMDB-51 UCF-101

X-CLIP [4] ✗ 44.6 ± 5.2 72.0 ± 2.3
VicTR (w/ CLIP Text emb.) ✗ 43.9 ± 0.7 67.2 ± 0.7
VicTR ✗ 51.0 ± 1.3 72.4 ± 0.3

VicTR (w/ CLIP Text emb.) ✓ 43.9 ± 1.5 70.7 ± 0.3
VicTR ✓ 52.1 ± 0.5 77.4 ± 0.2

Table A.1. Impact of more-descriptive text: We replace class la-
bels in HMDB-51 [2] and UCF-101 [7] with rich class-descriptions
generated by ChatGPT3.5. On zero-shot evaluation, our video-
conditioned text embeddings benefit significantly-more from rich
text inputs, compared to the CLIP [5] text embeddings.

L/14 8-frame model (656B). This is because of three rea-
sons: (1) having fewer layers (i.e., 4 layers vs. 12/24 lay-
ers) and lightweight attention modules (i.e., temporal and
cross-modal attention vs. spatial attention) compared to the
image-VLM backbone [5], (2) processing significantly fewer
tokens (i.e., only temporal and text-class tokens remain), and
(3) doing text-conditioning only after the backbone (i.e., for
the most part, all text embeddings go through shared com-
putations). Ovrall, VicTR has a comparable footprint to
prior work such as [3, 4, 9], providing a fair comparison (see
respective GFLOPs in Table 3 and Table 4).

Other forms of semantic information: In our framework,
we use a fixed vocabulary of auxiliary prompts as seman-
tic inputs, that is specific to each dataset. Another way of
providing semantic information is in the form of captions.
If available, a detailed set of captions may provide better
semantic supervision. However, they come with a signif-
icant cost, since they need to be annotated per-video. In
contrast, our auxiliary prompts are freely-available and can
be selected with only a minimal effort, as they are common
for all videos in a dataset. Our model learns to highlight
relevant information for a given video implicitly, via affinity
weighting, without needing any ground-truth annotations.

Impact of more-descriptive text: By default, we use
class labels with the standard CLIP [5] prompt template
to generate text embeddings. However, if available, more-
descriptive text such as human-annotated captions (expen-
sive) or machine-generated descriptions (inexpensive) can
provide richer information for our cross-modal attention,
improving video-conditioned text representations. We val-
idate this claim by replacing class-labels with rich class-
descriptions from ChatGPT3.5 (Table A.1). On zero-shot
evaluation, the relative gains from our text improve on both
HMDB-51 [2] (+7.1% → +8.2%) and UCF-101 [7] (+5.2%
→ +6.7%), also raising the absolute performance.

Other reasoning tasks: The primary scope of this paper
is on a broad spectrum of recognition tasks. Yet, it is also
applicable to other reasoning tasks such as video VQA. In
Table A.2, we evaluate VicTR on NExT-QA [11] under
zero-shot settings, showing gains over comparable baselines

Model Type Params NExT-QA

Random - - 20.0

CaKE-LM [8]
Enc-Dec

2.7B 34.9
InternVideo [10] 1.3B 49.1
SeViLA [13] 4.1B 63.6

Just-Ask [12]
Enc only

75M 38.4
X-CLIP [4] 194M 43.8
VicTR (B/16) 167M 45.5

Table A.2. Video reasoning with VQA: On NExT-QA [11]
zero-shot evaluation, our model outperforms comparable baselines.
Large-scale models with LLM decoders are de-emphasized.

with encoder-only designs (i.e., no LLM decoders). This
validates that our model can readily be extended to other
tasks with jointly-embedded video and text.
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