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A. Discussion about FG-ARI unreliability
FG-ARI has been a common metric in assessing predicted
object masks against ground-truth segmentation in previous
works. However, several recent works have raised concerns
about its reliability [8, 17, 25, 28, 36]. Notably, FG-ARI is
criticized for its unreliability, which may favor either over-
segmentation [8, 25] or under-segmentation. Additionally,
the fact that it ignores background pixels makes it unable
to probe a model’s effectiveness in object segmentation [17,
25].

Consequently, FG-ARI can be misleading in assessing
segmentation quality. We illustrate this in Tab. 6, where we
show that we can achieve the highest 49.9 FG-ARI score in
the Pascal dataset by trivially assigning all pixels to a single
slot-mask (1-block mask). This highlights the metric’s un-
reliability, particularly in datasets with scenes featuring few
or single objects.

To further examine FG-ARI, Fig. 7 compares qualitative
results of SPOT with an autoregressive transformer decoder

(a) Ground Truth

(b) SPOT

(c) SPOT w/ MLP-based decoder

Figure 7. Example results on COCO 2017, using 7 slots.

(the standard setup) and SPOT with an MLP-based decoder.
While the standard SPOT setup outperforms SPOT with an
MLP decoder in MBOi, MBOc, and MIOU metrics, SPOT
with MLP achieves a higher FG-ARI score (42.5 vs. 37.8)
(see Table 1 and Table 4 in the main paper). However, the
qualitative results in Fig. 7 indicate that SPOT with MLP
is distinctly inferior to the standard SPOT. This is particu-
larly evident in the first three images, showing notable over-
segmentation (as seen with the bear, horse, and dog) and
incorrect object grouping (such as the horse and rider).

These observations emphasize the inadequacy of FG-
ARI in measuring the segmentation quality of predicted
object masks. Unsupervised object-centric methods should
place greater reliance on MBO and MIOU metrics.

B. Additional experimental results
B.1. Comparison with prior object-centric methods

In Table 6, we present extended benchmark results, includ-
ing the mean Intersection over Union (MIOU) and Fore-
ground Adjusted Rand index (FG-ARI) across all datasets.
We show results for SPOT on FG-ARI derived from both
decoder and slot encoder attention masks, offering a more
comprehensive view of its capabilities.
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METHOD MBOi MBOc MIOU FG-ARI

MOVI-C
11-block Mask 19.5 - 18.2 42.7
SA [21]† 26.2±1.0 - - 43.8±0.3

SLASH [18] - - 27.7±5.9 51.9±4.0

SLATE [29]† 39.4±0.8 - 37.8±0.7 49.5±1.4

DINOSAUR (MLP) [28] 39.1±0.2 - - 68.6±0.4

DINOSAUR [28] 42.4 - - 55.7
LSD [16] 45.6±0.8 - 44.2±0.9 52.0±3.5

SPOT w/o ENS (ours) 47.0±1.2 - 46.4±1.2 52.1±3.3/57.9±2.0

SPOT w/ ENS (ours) 47.3±1.2 - 46.7±1.3 52.3±3.3/57.9±2.0

MOVI-E
24-block Mask 20.4 - 18.8 41.9
SA [21]† 24.0±1.2 - - 45.0±1.7

SLATE [29]† 30.2±1.7 - 28.6±1.7 46.1±3.3

DINOSAUR (MLP) [28] 35.5±0.2 - - 65.1±1.2

SlotDiffusion [36] 30.2 - 30.2 60.0
LSD [16] 39.0±0.5 - 37.6±0.5 52.2±0.9

SPOT w/o ENS (ours) 39.9±1.1 - 39.0±1.1 56.4±4.1/59.9±0.4

SPOT w/ ENS (ours) 40.1±1.2 - 39.3±1.2 56.8±4.3/59.9±0.4

PASCAL
1-block Mask 19.1 23.0 17.4 49.9
6-block Mask 24.7 25.9 24.2 13.9
SA [21]† 24.6 24.9 - 12.3
SLATE [29]† 35.9 41.5 - 15.6
CAE [22]† 32.9±0.9 37.4±1.0 - -
DINOSAUR (MLP) [28] 39.5±0.1 40.9±0.1 - 24.6±0.2

DINOSAUR [28] 44.0±1.9 51.2±1.9 - 24.8±2.2

Rotating Features [23] 40.7±0.1 46.0±0.1 - -
SlotDiffusion [36] 50.4 55.3 - 17.8
SPOT w/o ENS (ours) 48.1±0.4 55.3±0.4 46.5±0.4 19.4±0.7/19.7±0.4

SPOT w/ ENS (ours) 48.3±0.4 55.6±0.4 46.8±0.4 19.9±0.9/19.7±0.4

COCO
7-block Mask 16.8 19.5 15.9 22.7
SA [21]† 17.2 19.2 - 21.4
SLATE [29]† 29.1 33.6 - 32.5
DINOSAUR [28] 32.3±0.4 38.8±0.4 - 34.3±0.5

SlotDiffusion [36] 31.0 35.0 - 37.2
Stable-LSD [16] 30.4 - - 35.0
SPOT w/o ENS (ours) 34.7±0.1 44.3±0.3 32.7±0.1 36.6±0.3/37.8±0.5

SPOT w/ ENS (ours) 35.0±0.1 44.7±0.3 33.0±0.1 37.0±0.2/37.8±0.5

Table 6. Comparison with object-centric methods on COCO, PAS-
CAL, MOVi-C and MOVi-E datasets. SPOT results are the mean
and std over 3 seeds. For SPOT FG-ARI, we report results from
both decoder/slot encoder masks. DINOSAUR uses an autore-
gressive decoder and DINO [2] ViT encoder (ViT-B/16 for PAS-
CAL and MOVi-C, ViT-S/8 for COCO). DINOSAUR-MLP uses
an MLP decoder and DINO ViT encoder (ViT-B/16 for COCO and
PASCAL, ViT-S/8 for MOVi-C/E). †: COCO and PASCAL results
of SA and SLATE are from [36], MOVi-C/E results are from [28]
for SA and from [16] for SLATE, PASCAL results of CAE are
from [23]. We bold the best and underline the second-best results.

SP ST
DECODER SLOT ATTENTION

MBOi MIOU FG-ARI MBOi MIOU FG-ARI

(a) 45.3±1.8 44.6±1.7 50.6±4.3 42.8±0.1 42.0±0.1 55.4±0.6

(b) ✓ 46.1±0.9 45.2±0.9 51.8±2.7 42.5±0.1 41.6±0.1 57.6±0.7

(c) ✓ ✓ 47.3±1.2 46.7±1.3 52.3±3.3 46.2±0.8 45.4±0.7 57.9±2.0

Table 7. Ablation study on MOVi-C. Metrics for slot masks gener-
ated by DECODER and SLOT ATTENTION. Results are mean and
standard dev. over 3 seeds. SP: sequence permutation with en-
sembling of nine permutations at test-time, ST: self-training.

BO-QSA [15] ST MBOi

COLLAPSE

✓ 30.7±2.2

✓ ✓ 34.7±0.1

Table 8. Image encoder training stability results on COCO. Re-
sults are the mean and standard deviation of the decoder’s MBOi

over 3 seeds. ST: self-training studies the impact of the distillation
loss LATT, and BO-QSA the impact of using trainable initializa-
tion of slots along with bi-level optimization [3, 15]. All models
use sequence permutation in the autoregressive decoder.

SPOT outperforms other methods in MBOi, MBOc and
MIOU across all datasets, except for the MBOi in the Pascal
setting, where it ranks second-best. Concerning FG-ARI,
SPOT achieves the best results in COCO and second-best
in MOVi-C and MOVi-E (within the standard deviation).
However, as discussed in Sec. A, FG-ARI is unreliable.
For instance, in the Pascal dataset, the 1-block mask (i.e.,
the trivial solution where the entire image is covered by a
single mask) achieves the highest FG-ARI score, doubling
the score of the second-best.

B.2. Ablations in MOVi-C

In Tab. 7, we analyze the effects of self-training and se-
quence permutations on the MOVi-C dataset. Both of these
approaches enhance performance, resulting, for instance, in
a 2-point increase in MBOi.

B.3. Image encoder training stability analysis

In Tab. 8, we notice that fine-tuning the image encoder,
without self-training, can avoid training collapse by us-
ing trainable initial slots and bi-level optimization (BO-
QSA [15]). However, the achieved MBOi score, 30.7, is
notably lower compared to not fine-tuning the image en-
coder and using randomly initialized slots, where the MBOi

is 32.7 (refer to Tab. 1 entry (b) in the main paper). Further-
more, fine-tuning the image encoder solely with BO-QSA
and without self-training exhibits a high standard deviation
of 2.2, indicating there is still a training stability issue. The
introduction of self-training not only enhances performance
significantly (from 30.7 to 34.7) but also stabilizes the train-
ing process, as evident from the drop in standard deviation



SlotDiffusion [36] DINOSAUR [28] SPOT
Offic.Reprod.w/ BO Offic.Reprod.w/ BO w/o ENSw/ ENS

MBOc 35.0 36.3 34.7 38.8 42.1 39.7 44.3 44.7
MBOi 31.0 30.5 29.5 32.3 32.3 31.5 34.7 35.0

Table 9. Results on COCO from integrating SlotDiffusion [36]
and DINOSAUR [28] frameworks with BO-QSA, referred to as
BO. Except for DINOSAUR (OFFIC.), which is trained for 270
epochs, all others are trained for 100 epochs.

ENCODER METHOD MBOi MBOc MIOU FG-ARI

DINO
DINOSAUR 31.6±0.7 39.7±0.9 - 34.1±1.0

SPOT w/o ENS 34.7±0.1 44.3±0.3 32.7±0.1 36.6±0.3

SPOT w/ ENS 35.0±0.1 44.7±0.3 33.0±0.1 37.0±0.2

MoCo-v3
DINOSAUR 31.4±0.2 38.5±0.5 - 35.2±0.2

SPOT w/o ENS 32.7±0.2 41.7±0.4 30.7±0.2 34.4±0.2

SPOT w/ ENS 32.9±0.2 42.0±0.4 30.9±0.2 34.8±0.3

MAE
DINOSAUR 30.2±1.8 33.2±1.8 - 32.8±3.7

SPOT w/o ENS 33.3±0.3 40.7±0.7 31.4±0.3 37.5±1.0

SPOT w/ ENS 33.4±0.3 40.9±0.7 31.6±0.3 37.7±1.0

Table 10. Evaluation with various pre-trained encoders on COCO.
SPOT results are the mean and standard deviation over 3 seeds.

from 2.2 to 0.1. This underscores the crucial role of self-
training in ensuring training stability.

B.4. Impact of bi-level optimized query on other
frameworks

In Tab. 9, we show that BO-QSA [15] without our SPOT’s
self-training does not perform well on DINOSAUR [28] and
SlotDiffusion [36] frameworks.

B.5. Comparing with other pre-trained image fea-
tures

In our experiments, we used DINO [2] features for the im-
age encoder and reconstruction targets Y . We also explored
MOCO-v3 [4] and MAE [13] as alternatives, comparing
SPOT with DINOSAUR on the COCO dataset. Results
in Tab. 10 show SPOT outperforming DINOSAUR across
all examined pre-trained encoders, except with MOCO-v3
and FG-ARI metric. DINO excels in MBOi, MBOc, and
MIOU metrics, while MAE performs best in the FG-ARI
metric.

B.6. Performance across different instance sizes

In Fig. 8, we present a detailed analysis of SPOT’s perfor-
mance across various instance sizes. We observe that SPOT
performs optimally when instances occupy between 20%
and 80% of the input image area. For larger instances (ex-
ceeding 80%), SPOT continues to yield favorable results.
Conversely, a decline in performance is noted as the size of
the instances decreases. We note that this decrease in per-
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Figure 8. Analysis of SPOT performance across different instance
sizes. We demonstrate SPOT’s performance, measured in MBOi

on COCO, across varied instance sizes. The instance sizes are
expressed as a percentage of the total image area, categorized into
distinct bins: 0-0.5%, 0.5-1%, 1-5%, 5-10%, 10-20%, 20-50%,
50-80%, 80-100%.

(a) Large size instances

(b) Medium size instances

(c) Small size instances

Figure 9. Example SPOT’s results on COCO 2017, using 7 slots,
for large, medium and small instance sizes.

formance for smaller instance sizes is expected due to the
coarse resolution of ViT encoders.

In Fig. 9, we provide examples for large, medium and
small instance mask sizes. For the large and medium-sized
examples, we observe good performance. For small in-
stances, there is often a tendency to be grouped together
or be part of the background.

C. Further Discussion
C.1. About the autoregressive decoder

Why use an autoregressive decoder design? For object-
centric learning, autoregressive (AR) design was shown
to be superior for handling complex scenes [28–30] com-
pared to spatial-broadcast MLPs that make a strong as-
sumption that patches are independent when conditioned
on slots. In contrast, AR imposes no assumption: from
the chain rule of probability, any joint distribution over
random variables (e.g., patches) can be expressed as the
product of conditional distributions AR-style. While not
all AR factorization orderings are effective, it is crucial to
note that effective ones can be defined for images. This is



supported by a significant body of work in image synthe-
sis [9, 10, 26, 27, 32, 33, 38, 39] and recent successes in
self-supervised pre-training [6] and generalist image mod-
els [1]. Also, our AR decoder has access to the slots that
encode information from the entire image.
Does using permutations suggest causal AR-parsing is
irrelevant for 2D data? The use of permutations al-
lows the AR decoder to learn from multiple factorization
orders (which has shown positive effects even in text [37]).
Sequence permutations aim to tackle an overfitting issue:
AR transformers rely less on input slots when predicting
later tokens in the sequence. With the permutations, due
to shared parameters across all sequence orders, the model
learns to equally rely on slots across all token positions. We
perceive this permutation strategy as more natural for im-
plementation with 2D data, as all used orderings are equally
meaningful.

C.2. Limitations and future work

As in prior works, SPOT extracts a fixed number of slots,
a constraint that should be addressed in future works. Ad-
ditionally, integrating online teacher-student training (e.g.,
via momentum teachers) during the second training stage
of SPOT could potentially enhance both training efficiency
and performance. Furthermore, as depicted in Fig. 8, there
is a decrease in performance with small-sized objects, in-
dicating a need to explore strategies for handling higher-
resolution images in future studies. Finally, SPOT shows a
preference for semantic over instance segmentation, as evi-
denced by its performance on the MBOi and MBOc metrics,
which is linked to the broader issue of object definition am-
biguity in real-world images.

D. Implementation details
D.1. MLP decoder

In the MLP-based decoder, we employ the spatial broadcast
mechanism as described in prior works [28, 35], in which
each slot is expanded into n tokens that correspond to the
patches. Next, learnable positional information is added to
these tokens for spatial identification. These tokens are then
processed individually by a four-layer MLP with ReLU ac-
tivations. This process yields both the reconstruction and
an alpha map for each slot (dy + 1 dimensions). The alpha
map serves as an attention map that indicates the active re-
gions of the slot. The final reconstructed output is obtained
by aggregating these individual slot reconstructions, using
the alpha maps as weighting factors. In the MLP decoder,
the slot-attention masks are the predicted alpha maps.

D.2. SPOT models

We employ the Adam optimizer [19] with β1 = 0.9, β2 =
0.999, no weight decay, and a batch size of 64. The learning

rate (lr) follows a linear warm-up from 0 to a peak value
for 10000 training iterations and then decreases via a co-
sine annealing schedule. For experiments on COCO and
PASCAL using DINO and MoCo-v3 encoders and for both
training stages, the peak learning rate is 4 × 10−4 and the
low value is 4×10−7. For both stages with MAE on COCO
and the first stage of MOVi-C/E experiments, the peak value
is 2 × 10−4 and the low value is 4 × 10−5. For the second
stage of MOVi-C/E experiments, the peak value is 2×10−4

and the low value is 1.5× 10−4. For each training stage on
COCO and PASCAL, we use 50 and 560 training epochs,
respectively. For MOVi-C/E experiments, we use 65 and 30
epochs for the first and second stages, respectively.

We implement our SPOT models using ViT-B/16 [5] for
the encoder (by default initialized with DINO [2]), without
applying the final layer norm. In the autoregressive trans-
former decoder, we use 4 transformer blocks each one with
6 heads. For the MLP-based decoder, we use 2048 hidden
layer size. For all experiments, we use 3 iterations in the slot
attention module with the dimension of slot du being 256
and the slot attention’s MLP hidden dimension being 1024.
Unless stated otherwise, loss weight λ is 0.005. For MLP-
based decoder, MoCo-v3 [4], and MAE [13] encoders, λ is
0.001. At the self-training stage, we fine-tune the last four
ViT encoder’s blocks.

Following [28], on COCO, PASCAL, MOVi-C, and
MOVi-E we use 7, 6, 11, and 24 slots, respectively.

In the main paper, we explored a training approach in-
spired by CapPa [31]. To tune this approach, we ex-
perimented with different percentages of parallel decoding
—25%, 50%, and 100%— and observed MBOi scores of
27.8, 25.9, and 23.6, respectively. We found that a lower
percentage of parallel decoding correlates with better per-
formance. Consequently, we used a 25% parallel decoding
for the experiment in the main paper.

D.3. Datasets and evaluation

Here, we provide details about the employed datasets and
the evaluation protocol.
COCO We use COCO 2017 dataset for training, which
consists of 118,287 images, and evaluate SPOT on the val-
idation set of 5,000 images. During training, we resize the
minor axis of the images to 224 pixels, perform center crop-
ping at 224×224 and then random horizontal flipping with
0.5 probability. For the evaluation, we use both types of
masks: instance masks for the MBOi, MIOU, FG-ARI and
segmentation masks for the MBOc metrics. For consistency
with previous studies [11, 14, 28], we scale the minor axis to
320 pixels, perform center cropping, and evaluate the masks
at 320×320 resolution.
PASCAL We use PASCAL VOC 2012 “trainaug” set for
training, which consists of 10,582 images. The "trainaug"
variant contains 1,464 images from the segmentation train



set and 9,118 from the SBD dataset [12]. We use this split,
for consistency with previous works [24, 28, 34]. During
training, we resize the minor axis of the images to 224 pix-
els, perform simple random cropping at 224×224 and then
random horizontal flipping with 0.5 probability. We eval-
uate on the official segmentation validation set, which con-
sists of 1,449 images. We ignore the unlabeled pixels during
evaluation. Similar to COCO, we resize the minor axis to
320 pixels, perform center cropping, and evaluate the masks
at 320×320 resolution.

MOVi-C/E We transform MOVi-C/E datasets, originally
consisting of videos, into image datasets by selecting nine
random frames from each clip of the train set. From this
process, we obtain 87,633 images for training with MOVi-
C and 87,741 images with MOVi-E. During training, we
resize the images at 224×224 resolution. For evaluation,
we use every frame from the 250 clips of the validation
set consisting of 6,000 images, being consistent with prior
works [7, 20, 28]. We evaluate the masks at the full
128×128 resolution.

n-block Mask : As in [28], to generate block mask pat-
terns, we first divide the image into columns and then sub-
divide these columns to obtain the required number of slot
masks. Specifically, for MOVi-C, we utilize 3 columns to
produce a total of 11 block masks. For MOVi-E, we use 4
columns to accommodate 24 masks. In the case of PASCAL
VOC 2012, we use 2 columns for 6 masks. For COCO, we
use 2 columns for 7 masks. The number of block masks is
aligned with the number of slots utilized for each respective
dataset. For the 1-block mask, we employ just one column
and one mask; in other words, the entire image is covered
by a single mask.

References
[1] Yutong Bai, Xinyang Geng, Karttikeya Mangalam, Amir

Bar, Alan Yuille, Trevor Darrell, Jitendra Malik, and
Alexei A Efros. Sequential modeling enables scal-
able learning for large vision models. arXiv preprint
arXiv:2312.00785, 2023. 4

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2, 3, 4

[3] Michael Chang, Tom Griffiths, and Sergey Levine. Object
representations as fixed points: Training iterative refinement
algorithms with implicit differentiation. In NeurIPs, 2022. 2

[4] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
ICCV, 2021. 3, 4

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Jakob Uszkoreit, Mostafa Dehghani Neil Houlsby, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,

and Neil Houlsby. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 4

[6] Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai,
Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar,
Joshua M Susskind, and Armand Joulin. Scalable pre-
training of large autoregressive image models. arXiv preprint
arXiv:2401.08541, 2024. 4

[7] Gamaleldin Fathy Elsayed, Aravindh Mahendran, Sjoerd van
Steenkiste, Klaus Greff, Michael Curtis Mozer, and Thomas
Kipf. SAVi++: Towards end-to-end object-centric learning
from real-world videos. In NeurIPS, 2022. 5

[8] Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and
Ingmar Posner. Genesis: Generative scene inference and
sampling with object-centric latent representations. In ICLR,
2020. 1

[9] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
2021. 4

[10] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-
based text-to-image generation with human priors. In ECCV,
2022. 4

[11] Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah
Snavely, and William T. Freeman. Unsupervised semantic
segmentation by distilling feature correspondences. In ICLR,
2022. 4

[12] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,
Subhransu Maji, and Jitendra Malik. Semantic contours from
inverse detectors. In ICCV, 2011. 5

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 3, 4

[14] Xu Ji, Joao F. Henriques, and Andrea Vedaldi. Invariant
information clustering for unsupervised image classification
and segmentation. In ICCV, 2019. 4

[15] Baoxiong Jia, Yu Liu, and Siyuan Huang. Improving object-
centric learning with query optimization. In ICLR, 2022. 2,
3

[16] Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn.
Object-centric slot diffusion. In NeurIPS, 2023. 2

[17] Laurynas Karazija, Iro Laina, and Christian Rupprecht.
Clevrtex: A texture-rich benchmark for unsupervised multi-
object segmentation. In NeurIPS Datasets and Benchmarks
Track, 2021. 1

[18] Jinwoo Kim, Janghyuk Choi, Ho-Jin Choi, and Seon Joo
Kim. Shepherding slots to objects: Towards stable and ro-
bust object-centric learning. In CVPR, 2023. 2

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 4

[20] Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahen-
dran, Austin Stone, Sara Sabour, Georg Heigold, Rico Jon-
schkowski, Alexey Dosovitskiy, and Klaus Greff. Condi-
tional object-centric learning from video. In ICLR, 2022. 5

[21] Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. In NeurIPS, 2020. 2



[22] Sindy Löwe, Phillip Lippe, Maja Rudolph, and Max Welling.
Complex-valued autoencoders for object discovery. Transac-
tions on Machine Learning Research, 2022. 2

[23] Sindy Löwe, Phillip Lippe, Francesco Locatello, and Max
Welling. Rotating features for object discovery. NeurIPs,
2023. 2

[24] Luke Melas-Kyriazi, Christian Rupprecht, Iro Laina, and
Andrea Vedaldi. Deep spectral methods: A surprisingly
strong baseline for unsupervised semantic segmentation and
localization. In CVPR, 2022. 5

[25] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu
Aubry. Unsupervised Layered Image Decomposition into
Object Prototypes. In ICCV, 2021. 1

[26] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, 2021. 4

[27] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Gen-
erating diverse high-fidelity images with vq-vae-2. NeurIPS,
2019. 4

[28] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Do-
minik Zietlow, Tianjun Xiao, Carl-Johann Simon-Gabriel,
Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox,
and Francesco Locatello. Bridging the gap to real-world
object-centric learning. In ICLR, 2023. 1, 2, 3, 4, 5

[29] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e
learns to compose. In ICLR, 2022. 2

[30] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsu-
pervised object-centric learning for complex and naturalistic
videos. In NeurIPS, 2022. 3

[31] Michael Tschannen, Manoj Kumar, Andreas Peter Steiner,
Xiaohua Zhai, Neil Houlsby, and Lucas Beyer. Image cap-
tioners are scalable vision learners too. In NeurIPs, 2023.
4

[32] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image gen-
eration with pixelcnn decoders. In NeurIPS, 2016. 4

[33] Aäron Van Den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel recurrent neural networks. In ICML,
2016. 4

[34] Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, and Luc Van Gool. Unsupervised semantic seg-
mentation by contrasting object mask proposals. In ICCV,
2021. 5

[35] Nick Watters, Loic Matthey, Chris P. Burgess, and Alexander
Lerchner. Spatial broadcast decoder: A simple architecture
for disentangled representations in VAEs. In ICLR work-
shops, 2019. 4

[36] Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Ani-
mesh Garg. Slotdiffusion: Object-centric generative model-
ing with diffusion models. In NeurIPS, 2023. 1, 2, 3

[37] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. Xlnet: General-
ized autoregressive pretraining for language understanding.
In NeurIPs, 2019. 4

[38] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han,

Zarana Parekh, Xin Li, Han Zhang, Jason Baldridge, and
Yonghui Wu. Scaling autoregressive models for content-rich
text-to-image generation. TMLR, 2022. 4

[39] Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller,
Olga Golovneva, Tianlu Wang, Arun Babu, Binh Tang, Brian
Karrer, Shelly Sheynin, et al. Scaling autoregressive multi-
modal models: Pretraining and instruction tuning. arXiv
preprint arXiv:2309.02591, 2023. 4


