
A. Video and Images

Please find the video attached with of our rendered
depths and examples comparing our approach to the
baselines. Fig. 6 and Fig. 7 illustrates the problem
of street surface estimation and floating artifacts on
nuScenes and Waymo, respectively.

B. Uncertainty Estimation
Please note that directly evaluating the uncertainty of
the beliefs for each voxel is not possible, as no ground-
truth is available.

To this end, we derive an uncertainty for the ren-
dered depth instead, considering all the voxels through
which a ray passes. Specifically, we use the BBA to
estimate an upper and lower bound of the depth and
take the difference as an uncertainty. Please recall that
in section 4.1., we compared occupied and free belief to
decide if a voxel i is occupied or not. This is equivalent
to distributing the uncertainty mi(Ω) equally to the
occupied and free hypothesis:

oi =
{

1 if mi(o) > mi(f)
0 else

(15)

=
{

1 if mi(o) + 1
2 mi(Ω) > mi(f) + 1

2 mi(Ω)
0 else

. (16)

The depth dest
j is then normally determined by finding

the first occupied voxel oi along the ray.

Minimal and Maximal Ray Length. Since the un-
certainty mass mi(Ω) is compatible with all hypotheses,
other assignments of mi(Ω) are also valid. Therefore, we
estimate the lower and upper bound of the ray length
by distributing the uncertainty mass to only one of both
hypotheses. If we assign all uncertainty mass mi(Ω) to
the occupied hypothesis mi(o), we obtain more occupied
voxels:

oocc
i =

{
1 if mi(o) + mi(Ω) > mi(f)
0 else

. (17)

This leads to the the minimal ray length dmin
j . Contrary

to this, assigning all uncertainty to the free hypothesis:

ofree
i =

{
1 if mi(o) > mi(f) + mi(Ω)
0 else

(18)

will lead to less occupied voxels, and we obtain the
maximum ray length dmax

j . Overall, we obtain the lower
bound of the ray length dmin

j , the upper bound of the
ray length dmax

j , and the already computed estimated
ray length dest

j .

Rendered Depth Uncertainty. Given the bounds,
we define the uncertainty per ray as maximal deviation
from the estimation:

duncert
j = max

(
|dmax

j − dest
j |, |dest

j − dmin
j |

)
. (19)

Note, that all ray lengths being equal corresponds to
an uncertainty of zero. We compare the obtained un-
certainty per ray duncert

j with the error to the LiDAR
measurement

derror
j = |dest

j − dlidar
j | . (20)

Please find the results illustrated in Fig. 8.

C. Multi-Frame Temporal Aggregation
In Tab. 5 we show the impact of changing the num-
ber of frames for temporal aggregation. We observe
that more frames for temporal aggregation increase the
performance at the cost of computation time.

#frames MAE RMSE δ <1.25 δ <1.252 δ <1.253

in m in m in % in % in %

5 0.99 3.09 90.0 94.8 97.2
10 0.94 2.99 91.8 95.6 97.4
50 0.92 2.96 92.9 96.2 97.7
100 0.92 2.95 93.0 96.3 97.7

Table 5. Impact of Number of Frames Used for Tem-
poral Aggregation. We evaluate the generated GT for a
varying number of frames used for temporal aggregation on
the nuScenes mini dataset with a voxel size 0.2 m.

D. Uncertainty Loss Weighting
To further analyze the influence of uncertainty weight-
ing, we trained the models without it and report the
results in Tab. 6. Uncertainty weighting is important
for the final performance.

Loss MAE RMSE δ < 1.25 δ < 1.252 δ < 1.253

in m in m in % in % in %

BCE 1.44/1.70 3.60/4.04 88.0/82.7 94.0/91.1 96.7/94.6
CE 1.42/1.55 3.47/4.10 88.5/88.2 94.5/94.0 97.0/96.5

Table 6. Uncertainty Loss Weighting. Training results
with/without uncertainty loss weighting.



Figure 6. Qualitative Comparison on the nuScenes
Dataset. We compare the occupancy maps generated by
our method with the ones of Occ3D [22] on the nuScenes
dataset [2]. Our method yields much better street surfaces
compared to Occ3D in many scenarios. The voxel size of
both methods is 0.4 m.

Figure 7. Qualitative Comparison on the Waymo
Dataset. We compare the occupancy maps generated by
our method with the ones of Occ3D [22] on the Waymo
dataset [20]. Our method yields much less floating artifacts
due to the explicit modeling of free space. The voxel size of
both methods is 0.4 m.



Figure 8. Uncertainty Estimates. We compare rendered depths and corresponding uncertainties of our occupancy ground-
truth data with our model predictions. The top row contains data from our ground-truth occupancy, while the bottom
row contains data from model predictions. We plot rendered depths dest

j against the LiDAR measurements on the left side.
Therefore, we create a heatmap containing the absolute frequency of (dest

j , dlidar
j ) pairs. Perfect predictions lie on the diagonal

such that dest
j = dlidar

j . The right column shows the estimated uncertainty duncert
j on the x-axis and the estimation error

derror
j = |dest

j − dlidar
j | on the y-axis. We follow the same procedure to create the heatmap of (duncert

j , derror
j ) pairs. As visible

by the strong diagonals, our method provides meaningful uncertainty estimates with a slight tendency to overestimate them.
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