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The supplementary material contains additional experi-
ments and figures that we did not include in the main paper.
In Appendix 1, we give an additional ablation on the impact
of viewpoint diversity on the quality of the proposed robot
consistency method. In Appendix 2, we provide additional
figures showing the dataset from the paper. In Appendix 3,
we provide the detailed evaluation table which was used
to calculate the performance of cameras on representative
parts in the paper.

1. Robot Consistency Viewpoint Ablation
In this section we provide an additional ablation study on
the viewpoint diversity required for robot consistency to
produce accurate estimates of model performance. In our
proof in section 3.2 of the paper, we assumed that the cam-
era poses were spherically symmetric - i.e. created a full
sphere around the object, however in practice this is not
feasible. The goal of this experiment is to determine the
minimum camera coverage required for robot consistency
to accurately estimate model performance.

Testing Setup. A sphere can be decomposed into an az-
imuth and zenith angle as shown in Figure 1. In our dataset,
the azimuth is a full 360 degrees because our robot can ro-
tate 360 degrees in the yaw-axis. Our goal is to find the
appropriate range of zenith angles for the camera w.r.t. the
robot. This corresponds to the range of the pitch and roll of
the robot. To do this, we follow the synthetic procedure de-
scribed in the main paper. We generate 4 cameras, similar
in location, FOV and resolution to the Basler-HR cameras
shown in Figure 3. We then synthetically generate sets of
30 scenes for 10 different parts and using different zenith
angle ranges. For instance, if the zenith angle range is 35
degrees, we place the camera directly on top of the objects,
then add a uniformly sampled jitter of ±35 degrees in the
zenith angle and move the camera accordingly.

For each part, we train 20 different keypoint models for
pose estimation Mi by varying different hyperparameters

Figure 1. Visualizing the azimuth and zenith angles of a camera
with respect to objects in a scene.
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Figure 2. As viewpoint diversity increases, the accuracy of
model performance estimated by robot consistency improves.
The above plot shows the improvement in absolute error w.r.t. true
performance against different zenith angles. We find that at zenith
angles ≈ 30 − 40 degrees, the robot consistency metric starts to
plateau. Since this is close to the 33 degree zenith coverage in
our dataset, the model performance estimates obtained using robot
consistency on our camera pose distribution are fairly accurate.
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such as input resolution, backbone etc. We evaluate all 20
of these models on all 10 parts using both the ground truth
pose gtTCO available in the synthetic world, and the robot
consistency method. We take the absolute difference be-
tween the model performance Erc(M) estimated via robot
consistency and compare it to perfect evaluation Egt(M)
obtained via ground truth:

1

N

N∑
i

|Erc(Mi)− Egt(Mi)| (1)

.
The above equation is called the Absolute Error w.r.t.

True Performance because it represents the error between
the model performance estimate from robot consistency and
the true model performance evaluated using the perfect syn-
thetic ground truth. We compute this error for multiple
zenith angles ranging from 0 to 180 degrees and plot this
result in Figure 2.

Discussion. Figure 2 shows that using a very small range
of zenith angles (less than 10 degrees) leads to poor evalua-
tion accuracy for robot consistency. However as the zenith
angle range goes beyond 30 degrees, the accuracy seems to
plateau. This works out for our dataset which has a ±33
degree zenith angle range i.e. the model performance esti-
mates obtained using robot consistency on our dataset are
fairly accurate.

2. Additional Samples from Dataset
Here, we include a set of figures that highlights some of
the diversity in our dataset. Figure 3 visualizes our multi-
camera setup. Figure 4 shows sample images from all the 13
different viewpoints captured of a single scene, along with
the modalities of AOLP/DOLP obtained through the FLIR-
monoP camera and the depth map processed from Photo-
neo’s point cloud. We also include figure 5 to showcase
some of the difficult part types in our dataset. Figures 6 to 8
show all 30 scenes captured in a given sequence for evalu-
ating robot consistency using different camera modalities.

3. Part-wise Results
In this section we provide the full results of the abbreviated
Table 2b from in main paper in Table 1. We find the re-
sults are consistent with the paper and Basler-HR performs
best. However with further research perhaps polarization or
structured light may perform better.

Figure 3. Our dataset uses 13 cameras placed at a distance
of 2.5m above the robot base. We visualize each camera’s pose
relative to the robot base at origin (0,0,0). In general, the robot
presents the objects to the camera at 0.5m above the base, so most
images are at a working distance of 1.5m to 2.2m. The cameras
are spread out in an XY plane of size 0.5m x 1.3m, leading to a
variety of baselines, including some very large ones.
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Figure 4. Our dataset contains wide baselines with diverse viewpoints. The above figure shows each image collected from every
camera per scene. We use 13 cameras at baselines up to 1m. The captured images include RGB and grayscale, along with AOLP/DOLP
Polarization, and Depth Map.
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Figure 5. Some of the challenging parts available in our dataset. From left to right: (1) Dark / Reflective parts cause issues in Photoneo’s
structured light point cloud, although they are bright in the degree of linear polarization. (2) Thin object span only a few pixels, making
them difficult to detect. (3) Long parts with non-uniform aspect ratio e.g. 25:1 makes it difficult for detection algorithms. (4) Thin
basket wires create a repeating pattern, making it difficult to determine the pose. (5) Corner Bracket 1 is only 1.5x1.5cm at a distance of
150-250cm making it difficult to distinguish.



Figure 6. The predictions from 30 scenes captured by Basler-HR that are used for robot consistency calculation. The above shows
each of the 30 captures from the perspective of 1 Basler-HR camera with pose predictions rendered on top. The poses are calculated using
all 5 cameras, however here we only show one camera’s viewpoint.



Figure 7. The predictions from 30 scenes captured by Photoneo that are used for robot consistency calculation. The above shows
each of the 30 captures from the perspective of a Photoneo camera with pose predictions rendered on top. Here, the pose prediction
incorporated the depth map processed from Photoneo’s point cloud.



Figure 8. The predictions from 30 scenes captured by multi-view FLIR that are used for robot consistency calculation. The above
shows each of the 30 captures from the perspective of a FLIR grayscale camera with pose predictions rendered on top. The poses were
calculated with all 4 cameras, including edge refinement using AOLP/DOLP.



Camera Basler LR Basler HR FLIR-monoP Photoneo

Part MVD Recall Precision MVD Recall Precision MVD Recall Precision MVD Recall Precision

Corner bkt 2.068 0.64 0.98 1.218 0.77 1.00 2.677 0.72 0.99 3.275 0.63 0.66
Corner bkt 0 3.096 0.54 0.88 2.256 0.68 0.98 3.256 0.40 0.95 3.206 0.53 0.58
Corner bkt 1 6.982 0.47 0.88 2.356 0.87 0.93 8.005 0.61 0.97 10.801 0.74 0.72
Corner bkt 2 11.064 0.47 0.77 4.176 0.62 0.87 10.625 0.29 0.85 11.924 0.57 0.63
Corner bkt 3 3.573 0.52 0.87 1.813 0.75 0.97 3.054 0.42 0.95 5.344 0.34 0.51
Corner bkt 4 2.275 0.80 0.95 1.263 0.85 0.96 2.909 0.80 0.95 3.315 0.78 0.75
Corner bkt 6 3.185 0.65 0.70 1.491 0.90 0.84 4.118 0.78 0.87 16.032 0.59 0.29

Gear 1 2.941 0.85 0.92 1.553 0.99 1.00 2.831 0.98 1.00 6.931 0.72 0.67
Gear 2 2.580 0.99 0.83 1.652 1.00 1.00 2.521 0.98 1.00 6.521 0.93 0.63
L bkt 2.476 0.85 0.98 1.476 0.81 0.98 3.124 0.82 0.99 2.912 0.86 0.95

Handrail bkt 5.546 0.31 0.95 2.087 0.72 0.99 4.481 0.49 0.96 8.700 0.36 0.75
Hex manifold 2.359 0.84 0.99 1.883 0.87 1.00 2.713 0.81 1.00 1.633 0.57 0.98
Oblong float 4.574 0.97 0.99 3.141 0.95 1.00 4.952 0.85 0.97 8.128 0.06 0.29

Pegboard basket 6.280 0.27 0.86 2.435 0.42 0.97 3.681 0.21 0.97 10.201 0.14 0.74
Pipe fitting 12.612 0.90 0.97 7.784 0.92 0.98 13.184 0.72 0.98 6.217 0.15 0.25

Single pinch clamp 6.476 0.72 0.77 4.312 0.89 1.00 8.101 0.78 1.00 4.333 0.83 0.64
Square bkt 4.411 0.78 0.98 2.622 0.88 0.99 4.310 0.79 0.99 2.978 0.84 0.77

T bkt 2.773 0.97 0.98 1.683 0.96 1.00 3.254 0.94 1.00 3.187 0.95 0.98
U bolt 6.018 0.80 0.98 5.497 0.75 0.99 6.557 0.72 1.00 5.033 0.77 0.99

Wraparound bkt 2.430 0.83 0.96 1.683 0.85 1.00 2.917 0.85 1.00 6.476 0.71 0.83

Table 1. Performance on different parts across cameras. We included the aggregated version of this table in Table 2b of the main paper.
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