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A. Details of PAC-NeRF-3v†

A.1. Method

In the experiments (Section 4), we used PAC-NeRF-3v†

as the stronger baseline. PAC-NeRF-3v† is an improved
variant of PAC-NeRF-3v for sparse-view settings in which
Eulerian static voxel grid optimization (Figure 2(a)) is im-
proved. We examined this model to determine whether
the proposed LPO, a few-shot learning method for dynamic
scenes, can be combined with other few-shot learning meth-
ods, such as those for static scenes.11 This appendix ex-

11As described in the footnote of the main text,8 in preliminary exper-
iments, we found that previous representative few-shot learning methods
(for example, DietNeRF [4] and FreeNeRF [10]) were less stable than the
standard PAC-NeRF-3v. This is possible because, in our experimental set-
tings, the number of views was small (three) despite the wide range of
views (upper hemisphere), and explicit voxel representations were more
effective than the fully implicit representation in [4, 10]. Therefore, we
used an improved variant that we developed. However, this study and pre-

plains the details of the model. PAC-NeRF-3v† adopts three
modifications: scheduling a surface regularizer, introduc-
ing view-invariant pixel-wise loss, and adjusting the train-
ing length.

Scheduling of surface regularizer. In the original PAC-
NeRF [6], a surface regularizer Lsurf is applied to regular-
ize the volume density field

Lsurf =
∑
p

clamp(αp, 10
−4, 10−1)

(
∆x

2

)2

, (9)

where αp indicates the alpha value of a particle with length
1 and is calculated as αp = 1−exp(−softplus(σp)), where
σp denotes the volume density of the particle. This regu-
larizer minimizes the total surface area, making the spread
of the particles more compact and tightening their shapes.
Consequently, the quality of the reconstructed geometries
improved [6].

In a preliminary experiment, we found that this regu-
larizer was also effective in eliminating unexpected masses
that tend to appear in places where there are few clues ow-
ing to the lack of views. However, we also found that this
regularizer has a side effect: it removes necessary compo-
nents when it is too strong. Based on these observations, we
scheduled this regularizer.
1. At the beginning of the training, the weight of Lsurf is

initialized to a default value of PAC-NeRF [6].
2. From the beginning of the training, the weight of Lsurf

is gradually increased for a certain period of time.
3. After a certain period, the weight of Lsurf is gradually

decreased until it reaches the default value.
We do not impose a large weight on Lsurf from the begin-
ning of the training (Step 1) because it can eliminate all par-
ticles, leading to learning “none” object. We decreased the
weight of Lsurf in Step 3 to alleviate the negative effects
caused by the introduction of strong regularization.

Implementation details. In the experiments, we doubled
the weight of Lsurf in Step 2 every 100 iterations until the
weight reached eight times its default value. In Step 3, we
halved the weight of Lsurf each time the resolution of voxel
grids was scaled. This halving process was conducted three

vious studies are not competitive but complementary. Therefore, further
investigation is important.
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times; therefore, the weight of Lsurf returned to the default
value when all halving processes were finished.

View-invariant pixel-wise loss. In sparse view settings,
it is challenging to distinguish view-dependent from view-
independent factors because there are few clues. Specif-
ically, in NeRF [7] (mainly, voxel-based NeRF [8]), the
view-dependent and view-independent factors (i.e., colors)
are represented by a multilayer perceptron (MLP), which
additionally receives a view direction d, and color fields
cG that do not receive d, respectively (Equation (8)). In
sparse-view settings, dividing the roles between the MLP
and cG is not trivial. In extreme cases, the MLP can over-
fit specific views in the training data (in such cases, cG no
longer plays an essential role in representing colors), mak-
ing it difficult to represent colors in novel views. To allevi-
ate this difficulty, we introduce a view-invariant (VI) pixel-
wise loss LV I

pixel, which is a variant of the pixel-wise loss
Lpixel (Equation (3)) where the color of a sample on a ray,
i.e., c, is calculated by the following equation instead of
Equation (8)

c̃(x, d̃, t) = MLP(interp(x, cG), d̃), (10)

where d̃ ∈ S2 denotes the view direction randomly sampled
from a unit sphere. Here, we use c̃ to denote c and distin-
guish it from the original c. This loss encourages MLP and
cG to capture the colors of the training images independent
of the viewing direction. Consequently, the model makes it
possible to avoid extreme cases (i.e., it mitigates the MLP
to overfit specific views in the training data and prevents cG

from losing a role) and provides some colors even for novel
views. The total pixel-wise loss L†

pixel is given by

L†
pixel = Lpixel + λLV I

pixel, (11)

where λ is a hyperparameter balancing the two losses. Dur-
ing training, L†

pixel was used instead of Lpixel.

Implementation details. We set λ = 0.1 in the experiments.

Adjustment of training length. As discussed in previous
studies [1, 10], one of the factors that make learning dif-
ficult in few-shot settings is overfitting to sparse views in
the training data, causing a loss of generalization ability. In
preliminary experiments, we observed a similar tendency
in our settings. Based on this observation, we adjusted the
training length (TL). In particular, the number of iterations
was reduced. Despite its simplicity, we empirically found
that this solution works well in severe view settings (e.g.
when the number of views is three).

Implementation details. In the experiments, we reduced the
number of iterations to one-third; the default number (6000)
was reduced to 2000. Based on this change, we reduced the
timing of scaling the resolution of voxel grids by one-third.

(a) (b) (c) (d) (e)
PAC-

NeRF-3v
PAC-

NeRF-3v†
w/o

scheduling
of Lsurf

w/o
LV I

pixel

w/o
adjustment

of TL

Droplet
PSNR↑ 24.42 26.83 26.51 26.41 24.88
SSIM↑ 0.975 0.981 0.981 0.979 0.977
LPIPS↓ 0.048 0.045 0.050 0.048 0.047

Letter
PSNR↑ 28.56 29.37 28.52 27.75 27.62
SSIM↑ 0.979 0.981 0.978 0.977 0.977
LPIPS↓ 0.032 0.030 0.036 0.032 0.034

Cream
PSNR↑ 26.10 27.09 26.51 25.73 25.67
SSIM↑ 0.982 0.983 0.981 0.981 0.980
LPIPS↓ 0.027 0.025 0.027 0.029 0.024

Toothpaste
PSNR↑ 28.70 31.77 31.70 31.60 30.76
SSIM↑ 0.988 0.991 0.991 0.991 0.990
LPIPS↓ 0.013 0.012 0.011 0.011 0.012

Torus
PSNR↑ 25.17 26.77 25.33 26.15 26.55
SSIM↑ 0.972 0.974 0.972 0.973 0.972
LPIPS↓ 0.047 0.043 0.047 0.043 0.044

Bird
PSNR↑ 26.29 27.64 28.82 27.45 26.26
SSIM↑ 0.979 0.982 0.982 0.982 0.981
LPIPS↓ 0.034 0.029 0.033 0.031 0.030

Playdoh
PSNR↑ 27.87 30.05 29.03 29.77 28.32
SSIM↑ 0.976 0.981 0.981 0.981 0.978
LPIPS↓ 0.046 0.042 0.046 0.043 0.043

Cat
PSNR↑ 30.82 31.93 31.90 30.36 31.75
SSIM↑ 0.987 0.989 0.989 0.987 0.988
LPIPS↓ 0.035 0.035 0.035 0.038 0.036

Trophy
PSNR↑ 28.93 29.05 29.23 29.17 28.85
SSIM↑ 0.963 0.963 0.964 0.964 0.964
LPIPS↓ 0.038 0.039 0.039 0.038 0.036

Average
PSNR↑ 27.43 28.94 28.62 28.27 27.85
SSIM↑ 0.978 0.980 0.980 0.979 0.979
LPIPS↓ 0.036 0.033 0.036 0.035 0.034

Table 4. Comparison of PSNR↑, SSIM↑, and LPIPS↓ on static
voxel grid optimization. The scores are calculated for the first
frames of the video sequences in the test set. Here, PAC-NeRF-
3V† (b), an improved variant of PAC-NeRF-3v, is compared with
the original PAC-NeRF-3v (a) and the ablated models, includ-
ing PAC-NeRF-3V† without scheduling of Lsurf (c), that without
LV I

pixel (d), and that without adjustment of TL (e). PAC-NeRF-
3V† (b) achieved the 20 best and five second-best scores among
27 evaluation items.

A.2. Experiments

Ablation studies were conducted to confirm the importance
of each modification. Specifically, we compared PAC-
NeRF-3v† with three ablated models: PAC-NeRF-3v† with-
out scheduling of Lsurf , PAC-NeRF-3v† without LV I

pixel,
and PAC-NeRF-3v† without adjustment of TL. We also ex-
amined the original PAC-NeRF-3v, that is, PAC-NeRF-3v†

without all three modifications.

Results. Table 4 summarizes the results. We found that
PAC-NeRF-3v† achieved the best or second-best scores
in most cases (20 best scores and five second-best scores
among the 27 evaluation items). Consequently, PAC-NeRF-
3v† achieved the best average scores in terms of all metrics.
These results indicate the importance of each modification.
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PAC- PAC- +LPO +LPO-F +LPO-P +GO PAC- +LPO +LPO-F +LPO-P +GO
NeRF NeRF-3v NeRF-3v†

Droplet
PSNR↑ 35.30 25.42 27.56 27.05 27.26 27.55 26.40 28.18 27.36 28.00 27.36
SSIM↑ 0.990 0.975 0.978 0.977 0.977 0.978 0.978 0.980 0.979 0.980 0.979
LPIPS↓ 0.029 0.047 0.043 0.045 0.044 0.044 0.046 0.044 0.045 0.044 0.046

Letter
PSNR↑ 36.01 28.94 29.99 29.53 29.90 29.56 29.59 30.44 30.23 30.29 30.09
SSIM↑ 0.991 0.981 0.982 0.982 0.982 0.982 0.983 0.982 0.983 0.982 0.983
LPIPS↓ 0.012 0.028 0.029 0.028 0.029 0.027 0.028 0.029 0.027 0.030 0.026

Cream
PSNR↑ 36.70 26.61 28.48 27.79 27.80 28.39 27.43 28.82 28.34 28.50 28.73
SSIM↑ 0.993 0.983 0.983 0.984 0.983 0.984 0.983 0.984 0.984 0.984 0.984
LPIPS↓ 0.014 0.026 0.023 0.024 0.025 0.023 0.024 0.023 0.023 0.024 0.023

Toothpaste
PSNR↑ 39.46 29.23 31.27 30.90 30.66 31.63 31.72 33.54 33.15 33.15 33.77
SSIM↑ 0.996 0.991 0.991 0.991 0.991 0.991 0.993 0.993 0.993 0.993 0.993
LPIPS↓ 0.006 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.009

Torus
PSNR↑ 34.54 23.99 28.91 25.22 27.82 24.92 26.65 30.05 29.18 29.03 29.27
SSIM↑ 0.988 0.970 0.978 0.971 0.977 0.970 0.974 0.980 0.978 0.978 0.978
LPIPS↓ 0.026 0.048 0.038 0.046 0.040 0.045 0.040 0.034 0.036 0.037 0.036

Bird
PSNR↑ 35.55 24.82 27.20 25.47 27.18 25.30 24.91 28.51 25.73 28.43 26.18
SSIM↑ 0.991 0.978 0.980 0.978 0.980 0.978 0.979 0.983 0.980 0.983 0.980
LPIPS↓ 0.019 0.036 0.032 0.035 0.032 0.036 0.036 0.028 0.033 0.028 0.033

Playdoh
PSNR↑ 36.43 27.70 28.39 27.85 28.41 27.80 29.66 30.07 29.71 30.13 29.63
SSIM↑ 0.991 0.978 0.978 0.977 0.978 0.977 0.982 0.982 0.982 0.982 0.982
LPIPS↓ 0.026 0.042 0.041 0.042 0.041 0.042 0.038 0.038 0.038 0.038 0.037

Cat
PSNR↑ 37.53 30.45 31.00 30.53 30.99 30.19 31.11 31.41 30.98 31.48 30.55
SSIM↑ 0.993 0.987 0.987 0.987 0.987 0.986 0.988 0.988 0.988 0.988 0.988
LPIPS↓ 0.016 0.033 0.032 0.031 0.031 0.031 0.034 0.032 0.032 0.032 0.032

Trophy
PSNR↑ 32.43 29.33 30.16 29.69 30.01 29.66 28.80 29.92 29.10 29.78 28.96
SSIM↑ 0.967 0.963 0.964 0.963 0.964 0.963 0.962 0.964 0.963 0.964 0.963
LPIPS↓ 0.034 0.039 0.037 0.039 0.038 0.039 0.039 0.037 0.039 0.038 0.039

Average
PSNR↑ 35.99 27.39 29.22 28.22 28.89 28.33 28.47 30.11 29.31 29.87 29.39
SSIM↑ 0.989 0.978 0.980 0.979 0.980 0.979 0.980 0.982 0.981 0.981 0.981
LPIPS↓ 0.020 0.034 0.032 0.033 0.032 0.033 0.033 0.031 0.032 0.031 0.031

Table 5. Comparison of PSNR↑, SSIM↑, and LPIPS↓ for each scene on geometric correction. This table is an extended version of Table 1.
The qualitative comparisons are provided in Figures 3–7.

B. Detailed analyses on main experiments

The main text focuses on representative results because of
space limitations. This appendix provides the extended re-
sults that further clarify the effectiveness of the proposed
method. In particular, we provide the scores for each scene
(Appendix B.1), discuss the impact of the number of itera-
tions in Algorithm 1 (Appendix B.3), and discuss the com-
putation times (Appendix B.2).

B.1. Scores for each scene

In this appendix, we provide the scores for each scene. To
evaluate the effectiveness of the proposed method from vari-
ous perspectives, we describe three experiments in the main
text. (I) Evaluation of the geometric correction (Table 1),
where the image quality after LPO was applied once, was
evaluated. (II) Evaluation of the physical identification (Ta-
ble 2), in which the accuracy of the physical property esti-
mation after Algorithm 1 was applied, was evaluated. (III)
Evaluation of the geometric recorrection (Table 3), in which
the image quality after Algorithm 1 was applied, was eval-
uated. In this appendix, we discuss these issues in detail.

I. Evaluation of geometric correction. First, we discuss
the scores for each scene on geometric correction (image

quality after LPO was applied once) in detail. Table 5 sum-
marizes the results. This is an extension of the list in Ta-
ble 1. We discuss the results from three perspectives.
(1) PAC-NeRF-3v/3v† vs. +LPO. When PAC-NeRF-3v was
used as the baseline, +LPO outperformed the baseline in
most cases (21 wins, 5 draws, and 1 loss). Similarly, when
PAC-NeRF-3v† was used as the baseline, +LPO outper-
formed the baseline in most cases (20 wins, 5 draws, and
2 losses). Consequently, in both cases, +LPO yielded better
average scores for all metrics. These results demonstrate
that +LPO is effective for geometric correction indepen-
dent of the baseline models. The qualitative comparisons
are shown in Figures 3–7.
(2) +LPO vs. +LPO-F/P. +LPO-F and +LPO-P are ablated
variants of +LPO. In +LPO-F, position (shape) optimiza-
tion is ablated, and only feature (appearance) optimization
is conducted. In +LPO-P, feature (i.e., appearance) opti-
mization is ablated, and only position (i.e., shape) optimiza-
tion is conducted. +LPO outperformed +LPO-F/P in most
cases when both PAC-NeRF-3v and PAC-NeRF-3v† were
used as the baselines. Specifically, when PAC-NeRF-3v
was used as the baseline, +LPO outperformed +LPO-F with
20 wins, 4 draws, and 3 losses and outperformed +LPO-P
with 15 wins, 10 draws, and 2 losses. When PAC-NeRF-3v†
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Ground truth PAC-NeRF PAC-NeRF-3v +LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

Droplet µ 2.00 × 102 2.19 × 102 2.76 × 102 2.59 × 102 2.59 × 102 2.63 × 102 2.58 × 102 2.70 × 102

κ 1.00 × 105 9.62 × 104 5.19 × 103 2.36 × 103 2.30 × 103 3.42 × 103 2.11 × 103 2.07 × 103

Letter µ 1.00 × 102 9.10 × 101 2.12 × 101 9.67 × 101 9.42 × 101 1.20 × 102 1.12 × 102 2.95 × 101

κ 1.00 × 105 9.14 × 104 1.69 × 10−2 6.69 × 104 3.88 × 104 9.12 × 103 1.37 × 104 8.26 × 10−2

Cream

µ 1.00 × 104 1.23 × 104 2.05 × 104 1.51 × 104 1.46 × 104 1.72 × 104 1.52 × 104 1.78 × 104

κ 1.00 × 106 1.35 × 106 1.64 × 106 1.44 × 106 1.78 × 106 9.39 × 105 9.37 × 105 1.75 × 106

τY 3.00 × 103 3.05 × 103 2.90 × 103 2.97 × 103 2.80 × 103 2.96 × 103 3.04 × 103 2.83 × 103

η 10.00 10.36 19.10 15.22 18.02 12.11 8.69 17.85

Toothpaste

µ 5.00 × 103 5.31 × 103 3.89 × 105 6.42 × 103 7.16 × 103 3.80 × 103 3.43 × 103 3.05 × 103

κ 1.00 × 105 5.66 × 104 2.63 × 103 2.51 × 104 4.41 × 103 2.53 × 104 2.25 × 104 1.87 × 104

τY 2.00 × 102 2.33 × 102 3.18 × 102 1.54 × 102 3.11 × 102 1.68 × 102 1.12 × 102 1.74 × 102

η 10.00 9.71 4.23 9.93 5.41 10.31 10.16 8.97

Torus E 1.00 × 106 1.05 × 106 1.89 × 106 1.15 × 106 1.02 × 106 1.21 × 106 1.02 × 106 8.83 × 105

ν 0.300 0.323 0.215 0.299 0.420 0.331 0.374 −0.016

Bird E 3.00 × 105 2.91 × 105 8.43 × 105 3.50 × 105 1.73 × 105 3.56 × 105 1.46 × 105 1.70 × 105

ν 0.300 0.329 0.402 0.301 −0.072 0.225 −0.065 −0.281

Playdoh
E 2.00 × 106 3.87 × 106 3.90 × 106 2.61 × 106 7.61 × 106 2.64 × 106 4.03 × 106 2.96 × 106

τY 1.54 × 104 1.68 × 104 2.96 × 104 2.25 × 104 1.64 × 104 2.52 × 104 2.42 × 104 2.66 × 104

ν 0.300 0.224 −0.195 0.189 0.127 0.191 0.052 0.172

Cat
E 1.00 × 106 1.39 × 105 5.00 × 104 1.06 × 105 8.55 × 104 8.49 × 104 7.46 × 104 8.58 × 104

τY 3.85 × 103 3.62 × 103 5.08 × 103 4.93 × 103 5.04 × 103 4.99 × 103 4.69 × 103 4.99 × 103

ν 0.300 0.327 0.344 0.304 0.336 0.231 0.110 0.379

Trophy θfric 40.00◦ 37.28◦ 36.97◦ 36.84◦ 37.07◦ 36.79◦ 36.73◦ 36.90◦

Table 6. Comparison of the values of the physical properties for each scene on physical identification when PAC-NeRF-3v was used as a
baseline. The absolute differences between the ground truth and the estimated physical properties are provided in Table 2. The qualitative
comparisons are provided in Figures 3–9.

was used as the baseline, +LPO outperformed +LPO-F with
17 wins, 8 draws, and 2 losses, and outperformed +LPO-P
with 12 wins, 13 draws, and 2 losses, respectively. Between
+LPO-F and +LPO-P, +LPO-P tends to outperform +LPO-
F. Specifically, when PAC-NeRF-3v was used as the base-
line, +LPO-P outperformed +LPO-F with 17 wins, 5 draws,
and 5 losses. When PAC-NeRF-3v† was used as the base-
line, +LPO-P outperformed +LPO-F with 13 wins, 9 draws,
and 5 losses. We consider this because shape correction
by +LPO-P can correct the failure estimation of the geome-
try within the physical constraints of MPM. In contrast, ap-
pearance correction by +LPO-F cannot do so and can cause
overcorrection beyond the physical constraints, as shown in
Figure 8. These results indicate that the feature and position
optimizations are complementary rather than competitive.
(3) +LPO vs. +GO. The difference between these two mod-
els is that +LPO conducts optimization in Lagrangian parti-
cle space and can optimize not only the features but also the
positions of the particles, whereas +GO performs optimiza-
tion in Eulerian grid space and can optimize the features
of the grids, but cannot optimize their positions. Owing to
these characteristics, the performance of +GO is close to
that of +LPO-F, which also optimizes the features but not
the positions.12 Specifically, when PAC-NeRF-3v was used
as the baseline, +LPO outperformed +GO with 18 wins, 5

12The main differences between these two models are that, in +LPO-
F, the positions of particles are fixed during training, while in +GO, the
positions of particles are changed in each iteration by random sampling
(note that they are not trainable).

draws, and 4 losses. When PAC-NeRF-3v† was used as the
baseline, +LPO outperformed +GO with 16 wins, 6 draws,
and 5 losses. These results confirm the importance of posi-
tion optimization in the +LPO.

II. Evaluation of physical identification. Next, we discuss
the scores for each scene for physical identification (the ac-
curacy of the physical property estimation after Algorithm 1
was applied) in detail. Table 2 in the main text summarizes
the absolute differences between the ground truth and the
estimated physical properties. Tables 6 and 7 summarize
the physical property values when PAC-NeRF-3v and PAC-
NeRF-3v† were used as the baselines, respectively. These
results are discussed from four perspectives.

(1) PAC-NeRF-3v/3v† vs. +LPO4. +LPO4 improved the
physical identification of PAC-NeRF-3v/3v† in most cases.
Specifically, when PAC-NeRF-3v was used as the baseline,
+LPO4 outperformed the baseline for 21 of the 23 evalu-
ation items. When PAC-NeRF-3v† was used as the base-
line, +LPO4 outperformed the baseline for 21 of 23 evalua-
tion items. These results indicate that +LPO is effective for
physical identification independent of the baseline models.
The qualitative comparisons are shown in Figures 3–7.

(2) +LPO4 vs. +LPO-F4/P4. When comparing these mod-
els, we found that superiority depends on the physical prop-
erties. This is because the physical properties interact, and
finding the optimal balance for performance is challeng-
ing. However, +LPO-F4/P4 sometimes encountered appar-
ent difficulties. For example, the difference in log10(E) and
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Ground truth PAC-NeRF PAC-NeRF-3v† +LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

Droplet µ 2.00 × 102 2.19 × 102 2.73 × 102 2.41 × 102 2.34 × 102 2.33 × 102 2.42 × 102 2.46 × 102

κ 1.00 × 105 9.62 × 104 5.45 × 103 1.28 × 105 7.26 × 103 3.02 × 104 3.02 × 103 2.21 × 103

Letter µ 1.00 × 102 9.10 × 101 4.18 × 101 1.02 × 102 8.18 × 101 9.84 × 101 7.62 × 101 3.66 × 101

κ 1.00 × 105 9.14 × 104 5.91 × 10−1 8.70 × 104 1.06 × 105 1.34 × 105 7.28 × 104 8.72 × 10−1

Cream

µ 1.00 × 104 1.23 × 104 1.51 × 104 1.26 × 104 1.18 × 104 1.16 × 104 1.24 × 104 1.19 × 104

κ 1.00 × 106 1.35 × 106 2.17 × 106 1.32 × 106 1.57 × 106 1.39 × 106 1.56 × 106 2.18 × 106

τY 3.00 × 103 3.05 × 103 2.94 × 103 3.04 × 103 2.99 × 103 2.97 × 103 2.93 × 103 2.95 × 103

η 10.00 10.36 15.67 10.80 11.44 12.01 12.47 11.25

Toothpaste

µ 5.00 × 103 5.31 × 103 2.80 × 103 4.66 × 103 3.15 × 103 4.94 × 103 2.80 × 103 3.64 × 103

κ 1.00 × 105 5.66 × 104 3.67 × 103 2.12 × 104 2.34 × 104 1.26 × 104 2.57 × 104 2.53 × 104

τY 2.00 × 102 2.33 × 102 3.16 × 102 1.62 × 102 1.72 × 102 1.53 × 102 1.42 × 102 1.77 × 102

η 10.00 9.71 6.13 10.20 9.65 10.12 10.16 9.07

Torus E 1.00 × 106 1.05 × 106 8.43 × 105 1.09 × 106 1.06 × 106 1.09 × 106 9.66 × 105 1.18 × 106

ν 0.300 0.323 0.431 0.307 0.340 0.267 0.350 0.429

Bird E 3.00 × 105 2.91 × 105 3.99 × 105 3.19 × 105 4.61 × 105 3.28 × 105 5.10 × 105 5.93 × 105

ν 0.300 0.329 0.441 0.347 0.372 0.308 0.432 0.445

Playdoh
E 2.00 × 106 3.87 × 106 6.63 × 106 2.72 × 106 5.95 × 106 1.51 × 104 3.41 × 106 1.42 × 104

τY 1.54 × 104 1.68 × 104 1.99 × 104 2.30 × 104 1.85 × 104 2.33 × 105 2.42 × 104 1.43 × 105

ν 0.300 0.224 0.088 0.237 0.167 0.410 0.173 0.406

Cat
E 1.00 × 106 1.39 × 105 6.42 × 104 1.97 × 105 2.93 × 105 1.94 × 105 1.65 × 105 1.61 × 105

τY 3.85 × 103 3.62 × 103 4.67 × 103 4.50 × 103 3.97 × 103 4.59 × 103 4.52 × 103 4.54 × 103

ν 0.300 0.327 0.418 0.303 0.327 0.293 0.272 0.363

Trophy θfric 40.00◦ 37.28◦ 38.31◦ 37.75◦ 37.66◦ 37.51◦ 37.46◦ 37.79◦

Table 7. Comparison of the values of the physical properties for each scene on physical identification when PAC-NeRF-3v† was used as a
baseline. The absolute differences between the ground truth and the estimated physical properties are provided in Table 2. The qualitative
comparisons are provided in Figures 3–9.

that in ν on Bird was large when +LPO-F4 was used with
PAC-NeRF-3v and the difference in log10(E) on Playdoh
was large when +LPO-P4 was used with PAC-NeRF-3v†.
In contrast, +LPO4 exhibited stable performance. Owing
to this stability, +LPO4 outperformed +LPO-F4 and +LPO-
P4 in most cases. Specifically, when PAC-NeRF-3v was
used as the baseline, +LPO4 outperformed +LPO-F4 for 18
items and outperformed +LPO-P4 for 17 of the 23 evalua-
tion items. When PAC-NeRF-3v† was used as the baseline,
+LPO4 outperformed +LPO-F4 for 13 items and outper-
formed +LPO-P4 for 16 of the 23 evaluation items. These
results indicate that the joint optimization of features and
positions in Lagrangian space is useful for obtaining stabil-
ity and tackling difficult situations.

(3) +LPO4 vs. +GO4. +GO4 also sometimes suffers from
critical difficulties. For example, the difference in log10(E)
and that in ν on Bird was large when +GO4 was used with
PAC-NeRF-3v. In contrast, +LPO4 exhibited stable perfor-
mance and outperformed +GO4 in most cases. Specifically,
when PAC-NeRF-3v was used as the baseline, +LPO4 out-
performed +GO4 for 18 of the 23 evaluation items. When
PAC-NeRF-3v† was used as the baseline, +LPO4 outper-
formed +GO4 for 18 of the 23 evaluation items.

(4) +LPO4 vs. +None4. +None4 is outperformed by
the dynamic optimization methods (i.e., +LPO4, +LPO-F4,
+LPO-P4, and +GO4) in most cases. In particular, when
PAC-NeRF-3v was used as the baseline, +LPO4 outper-
formed +None4 for 20 of the 23 evaluation items. When

PAC-NeRF-3v† was used as the baseline, +LPO4 outper-
formed +None4 for 19 of the 23 evaluation items. These
results indicate that simple iterative updates without geo-
metric correction in Algorithm 1 are insufficient to improve
physical identification and that it is crucial to correct geo-
metric structures using a dynamic optimization method.

III. Evaluation of geometric recorrection. Finally, we
discuss the scores for each scene in the geometry recorrec-
tion (image quality after Algorithm 1 was applied) in de-
tail. Table 8 summarizes these results. This is an extension
of the results in Table 3. We observed tendencies similar
to those for geometry correction. Specifically, +LPO4 out-
performed not only the baselines (PAC-NeRF-3v and PAC-
NeRF-3v†) but also the ablated and comparative models, in-
cluding +LPO-F4, +LPO-P4, +GO4, and +None4, in most
cases. These results indicate that joint optimization of the
features and positions of particles in Lagrangian space is
essential not only when geometric correction is conducted
once but also when geometric correction is repeatedly con-
ducted along with physical reidentification through Algo-
rithm 1. Qualitative comparisons of PAC-NeRF-3v/3v†,
+LPO, and +LPO4 are shown in Figure 3–7. Qualitative
comparisons of +LPO4, +LPO-F4, +LPO-P4, +GO4, and
+None4 are presented in Figures 8 and 9.

B.2. Computation times

Table 9 lists the computation times for executing Algo-
rithm 1 for one iteration on Droplet with PAC-NeRF-
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PAC- PAC-
+LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

PAC-
+LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

NeRF NeRF-3v NeRF-3v†

Droplet
PSNR↑ 35.30 25.42 28.21 26.52 28.21 26.03 25.42 26.40 28.91 27.85 29.03 26.23 27.52
SSIM↑ 0.990 0.975 0.981 0.978 0.980 0.978 0.977 0.978 0.983 0.982 0.983 0.980 0.981
LPIPS↓ 0.029 0.047 0.042 0.046 0.045 0.046 0.047 0.046 0.041 0.042 0.043 0.045 0.043

Letter
PSNR↑ 36.01 28.94 30.07 30.07 29.83 30.00 29.25 29.59 30.26 31.09 30.50 29.70 29.80
SSIM↑ 0.991 0.981 0.983 0.983 0.982 0.983 0.983 0.983 0.983 0.984 0.982 0.982 0.984
LPIPS↓ 0.012 0.028 0.026 0.026 0.029 0.026 0.026 0.028 0.026 0.024 0.029 0.025 0.025

Cream
PSNR↑ 36.70 26.61 29.65 29.02 28.83 28.95 26.57 27.43 30.23 29.87 29.65 29.79 27.88
SSIM↑ 0.993 0.983 0.985 0.985 0.984 0.985 0.983 0.983 0.985 0.985 0.985 0.985 0.984
LPIPS↓ 0.014 0.026 0.022 0.023 0.024 0.022 0.026 0.024 0.021 0.022 0.022 0.021 0.024

Toothpaste
PSNR↑ 39.46 29.23 32.18 32.41 31.87 32.87 28.96 31.72 34.00 34.51 33.94 34.40 31.49
SSIM↑ 0.996 0.991 0.991 0.992 0.991 0.992 0.991 0.993 0.992 0.993 0.993 0.993 0.993
LPIPS↓ 0.006 0.010 0.011 0.010 0.011 0.010 0.010 0.010 0.010 0.009 0.010 0.009 0.009

Torus
PSNR↑ 34.54 23.99 30.07 27.06 29.37 25.36 24.82 26.65 30.48 30.01 30.23 28.93 26.74
SSIM↑ 0.988 0.970 0.982 0.975 0.981 0.970 0.973 0.974 0.983 0.982 0.982 0.979 0.975
LPIPS↓ 0.026 0.048 0.032 0.039 0.035 0.041 0.044 0.040 0.031 0.032 0.033 0.033 0.040

Bird
PSNR↑ 35.55 24.82 27.97 24.86 27.71 24.20 23.98 24.91 28.98 26.51 28.74 26.08 24.95
SSIM↑ 0.991 0.978 0.980 0.979 0.980 0.977 0.978 0.979 0.982 0.980 0.982 0.979 0.980
LPIPS↓ 0.019 0.036 0.034 0.039 0.034 0.041 0.040 0.036 0.031 0.033 0.032 0.034 0.036

Playdoh
PSNR↑ 36.43 27.70 29.32 28.05 29.01 28.02 27.94 29.66 30.01 29.45 29.25 28.94 28.02
SSIM↑ 0.991 0.978 0.981 0.978 0.980 0.979 0.979 0.982 0.983 0.982 0.982 0.982 0.981
LPIPS↓ 0.026 0.042 0.040 0.043 0.043 0.042 0.042 0.038 0.038 0.039 0.045 0.041 0.047

Cat
PSNR↑ 37.53 30.45 29.81 29.71 29.95 28.35 30.41 31.11 30.61 30.47 31.47 29.21 31.78
SSIM↑ 0.993 0.987 0.987 0.987 0.987 0.985 0.987 0.988 0.988 0.988 0.989 0.987 0.989
LPIPS↓ 0.016 0.033 0.028 0.028 0.028 0.028 0.028 0.034 0.025 0.026 0.025 0.026 0.025

Trophy
PSNR↑ 32.43 29.33 29.57 29.13 29.89 28.31 29.44 28.80 29.58 29.23 30.01 27.87 29.18
SSIM↑ 0.967 0.963 0.964 0.963 0.964 0.963 0.963 0.962 0.964 0.963 0.964 0.963 0.963
LPIPS↓ 0.034 0.039 0.037 0.039 0.039 0.039 0.039 0.039 0.036 0.039 0.038 0.039 0.039

Average
PSNR↑ 35.99 27.39 29.65 28.54 29.41 28.01 27.42 28.47 30.34 29.89 30.31 29.02 28.60
SSIM↑ 0.989 0.978 0.982 0.980 0.981 0.979 0.979 0.980 0.983 0.982 0.982 0.981 0.981
LPIPS↓ 0.020 0.034 0.030 0.032 0.032 0.033 0.034 0.033 0.029 0.030 0.031 0.030 0.032

Table 8. Comparison of PSNR↑, SSIM↑, and LPIPS↓ for each scene on geometric recorrection. This table is an extended version of
Table 3. The qualitative comparisons are provided in Figures 3–9.

Process # Frames Time (s)
(1) Eulerian static voxel grid optimization 1 284.6
(2) Physical property optimization
(a) Velocity optimization 4 101.9
(b) Warm-up optimization with partial frames 7 765.2
(c) Main optimization with entire frames 13 3153.3

(3) Lagrangian particle optimization 13 3225.4
(4) Color prediction 1 1.0

Table 9. Computation times of Algorithm 1 on NVIDIA A100
GPU. (1) and (2) are processes driven from the original PAC-
NeRF. (3) and (4) are processes newly introduced.

3v+LPO.13 The total computation time increases linearly
when repeatedly running Algorithm 1. However, it is ad-
justable under a quality-and-time trade-off, as discussed in
Appendix B.3. The computation time of LPO (3) is almost
identical to that of the main process of physical property
optimization (2-c) because the forward and backward pro-
cesses are identical with different optimization targets, as
shown in Figure 2(2) and (3). Similarly, the calculation
times for +LPO-F, +LPO-P, and +GO were almost identi-
cal to those for +LPO, indicating that the performance im-
provement was attributable to the ingenuity of the algorithm
and not to an increase in calculation cost.

13Computation times vary with scenes because of the difference in num-
ber of frames and object size (which affects the number of particles); how-
ever, we observed similar tendencies.

B.3. Impact of the number of iterations

In the main experiments, we fixed the number of iterations
in Algorithm 1, that is, R, to four for simplicity and fair
comparison. However, it is interesting and important to in-
vestigate how the number of iterations affects performance.
To answer this question, we analyze the impact of the num-
ber of iterations in this appendix.

Results. Table 10 summarizes the performance changes
with geometry (re)correction when the number of iterations
was changed. This table calculates the scores using the im-
ages in the test set. Table 11 lists the scores calculated using
images in the training set. We investigated these two cases
to examine the trade-off between the feasible reconstruction
of the training data and the generalization ability for the test
data. Table 12 presents the performance changes with phys-
ical identification when the number of iterations is changed.

When PAC-NeRF-3v was used as the baseline, the per-
formances for geometry (re)correction (for both the test and
training sets) and physical identification were the best when
the number of iterations was four in most cases. Specifi-
cally, as listed in Table 10, 6, 8, 13, and 18 itmes achieved
the best scores among the 27 evaluation items when the
number of iterations was one, two, three, and four, respec-
tively, for geometry (re)correction for the test set. When
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PAC-NeRF-3v +LPO1 +LPO2 +LPO3 +LPO4 PAC-NeRF-3v† +LPO1 +LPO2 +LPO3 +LPO4

Droplet
PSNR↑ 25.42 27.56 28.19 28.06 28.21 26.40 28.18 28.95 29.14 28.91
SSIM↑ 0.975 0.978 0.980 0.981 0.981 0.978 0.980 0.982 0.983 0.983
LPIPS↓ 0.047 0.043 0.043 0.042 0.042 0.046 0.044 0.042 0.041 0.041

Letter
PSNR↑ 28.94 29.99 29.90 29.96 30.07 29.59 30.44 30.76 30.70 30.26
SSIM↑ 0.981 0.982 0.983 0.982 0.983 0.983 0.982 0.983 0.984 0.983
LPIPS↓ 0.028 0.029 0.027 0.031 0.026 0.028 0.029 0.026 0.026 0.026

Cream
PSNR↑ 26.61 28.48 29.18 29.38 29.65 27.43 28.82 29.69 29.93 30.23
SSIM↑ 0.983 0.983 0.984 0.985 0.985 0.983 0.984 0.985 0.985 0.985
LPIPS↓ 0.026 0.023 0.022 0.023 0.022 0.024 0.023 0.022 0.022 0.021

Toothpaste
PSNR↑ 29.23 31.27 31.78 31.93 32.18 31.72 33.54 34.16 34.04 34.00
SSIM↑ 0.991 0.991 0.991 0.991 0.991 0.993 0.993 0.993 0.992 0.992
LPIPS↓ 0.010 0.010 0.011 0.011 0.011 0.010 0.010 0.010 0.010 0.010

Torus
PSNR↑ 23.99 28.91 29.87 30.20 30.07 26.65 30.05 30.90 30.97 30.48
SSIM↑ 0.970 0.978 0.981 0.982 0.982 0.974 0.980 0.983 0.984 0.983
LPIPS↓ 0.048 0.038 0.034 0.032 0.032 0.040 0.034 0.031 0.030 0.031

Bird
PSNR↑ 24.82 27.20 26.55 27.89 27.97 24.91 28.51 28.88 28.85 28.98
SSIM↑ 0.978 0.980 0.979 0.981 0.980 0.979 0.983 0.983 0.982 0.982
LPIPS↓ 0.036 0.032 0.035 0.033 0.034 0.036 0.028 0.030 0.031 0.031

Playdoh
PSNR↑ 27.70 28.39 29.14 29.32 29.32 29.66 30.07 30.16 30.26 30.01
SSIM↑ 0.978 0.978 0.981 0.981 0.981 0.982 0.982 0.983 0.983 0.983
LPIPS↓ 0.042 0.041 0.040 0.040 0.040 0.038 0.038 0.038 0.038 0.038

Cat
PSNR↑ 30.45 31.00 30.64 30.21 29.81 31.11 31.41 31.25 31.29 30.61
SSIM↑ 0.987 0.987 0.988 0.987 0.987 0.988 0.988 0.989 0.989 0.988
LPIPS↓ 0.033 0.032 0.027 0.027 0.028 0.034 0.032 0.027 0.024 0.025

Trophy
PSNR↑ 29.33 30.16 29.99 29.78 29.57 28.80 29.92 29.97 29.82 29.58
SSIM↑ 0.963 0.964 0.964 0.964 0.964 0.962 0.964 0.964 0.964 0.964
LPIPS↓ 0.039 0.037 0.037 0.037 0.037 0.039 0.037 0.037 0.036 0.036

Average
PSNR↑ 27.39 29.22 29.47 29.64 29.65 28.47 30.11 30.52 30.56 30.34
SSIM↑ 0.978 0.980 0.981 0.981 0.982 0.980 0.982 0.983 0.983 0.983
LPIPS↓ 0.034 0.032 0.031 0.031 0.030 0.033 0.031 0.029 0.029 0.029

Table 10. Comparison of PSNR↑, SSIM↑, and LPIPS↓ on geometric (re)correction when the number of iterations in Algorithm 1 is
changed. The scores were calculated using the images in the test set.

scores were the same, they were counted multiple times. As
listed in Table 11, 1, 3, 11, and 25 items achieved the best
scores among the 27 evaluation items when the number of
iterations was one, two, three, and four, respectively, for
geometry (re)correction for the training set. As listed in Ta-
ble 12, 2, 3, 3, and 16 items achieved the best scores among
the 23 evaluation items when the numbers of iterations were
one, two, three, and four for physical identification.

In contrast, when PAC-NeRF-3v† was used as the base-
line, the performance of the geometry (re)correction for the
test set was the best when the number of iterations was
three, whereas that for the training set was the best when
the number of iterations was four. The performance of the
physical identification was the best when the number of
iterations was three or four. Specifically, as listed in Ta-
ble 10, 5, 10, 15, and 10 items achieved the best scores
among the 27 evaluation items when the number of itera-
tions was one, two, three, and four, respectively, for geome-
try (re)correction for the test set. As listed in Table 11, 0, 4,
14, and 26 items achieved the best scores among the 27 eval-
uation items when the number of iterations was one, two,
three, and four, respectively, for geometry (re)correction
for the training set. As listed in Table 12, 1, 4, 7, and
11 items achieved the best scores among the 23 evaluation
items when the numbers of iterations were one, two, three,
and four for physical identification.

We consider that these differences arise from differences
in the initial static voxel grids. PAC-NeRF-3v† had bet-
ter static voxel grids; therefore, fewer updates were re-
quired to obtain the best performance (i.e., optimal geomet-
ric structures). Note that it is generally not trivial to de-
termine when to stop iterative updates because there is an
intractable trade-off between faithful reproduction of train-
ing data and overfitting. When PAC-NeRF-3v was used as
the baseline, the performance improvement continued un-
til four iterations because the geometric reconstruction was
more influential than overfitting. In contrast, when PAC-
NeRF-3v† was used as the baseline, the performance im-
provement (particularly for geometric (re)correction for the
test set) was saturated at three iterations because the perfor-
mance achieved the upper bound in an earlier phase. From
this time on, the overfitting problem became non-negligible.
Conducting further studies on this topic and exploring an
improved method (for example, determining the number of
iterations adaptively during training) will be interesting fu-
ture research topics. Furthermore, the effect of the above-
mentioned trade-off on the physical identification perfor-
mance is an open issue. A detailed investigation of this will
be an interesting topic for future research.
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PAC-NeRF-3v +LPO1 +LPO2 +LPO3 +LPO4 PAC-NeRF-3v† +LPO1 +LPO2 +LPO3 +LPO4

Droplet
PSNR↑ 32.48 36.61 36.97 37.12 37.41 32.31 36.09 37.21 37.83 37.96
SSIM↑ 0.985 0.990 0.991 0.991 0.992 0.985 0.990 0.992 0.992 0.992
LPIPS↓ 0.034 0.029 0.029 0.029 0.028 0.036 0.033 0.029 0.027 0.027

Letter
PSNR↑ 32.57 35.89 38.74 37.62 39.59 32.92 36.84 38.81 39.09 39.90
SSIM↑ 0.986 0.990 0.994 0.992 0.995 0.986 0.992 0.994 0.995 0.995
LPIPS↓ 0.020 0.020 0.015 0.019 0.013 0.021 0.019 0.015 0.013 0.012

Cream
PSNR↑ 34.91 38.45 39.50 37.90 40.11 35.18 38.50 38.70 39.60 40.39
SSIM↑ 0.991 0.990 0.994 0.992 0.995 0.990 0.993 0.994 0.995 0.995
LPIPS↓ 0.016 0.014 0.013 0.014 0.013 0.017 0.014 0.014 0.013 0.012

Toothpaste
PSNR↑ 37.41 41.49 42.10 42.54 42.91 37.36 41.43 42.56 43.07 43.41
SSIM↑ 0.996 0.997 0.997 0.997 0.997 0.996 0.997 0.997 0.997 0.998
LPIPS↓ 0.006 0.005 0.005 0.005 0.004 0.006 0.005 0.005 0.004 0.004

Torus
PSNR↑ 28.45 34.29 35.96 36.75 37.20 31.70 35.30 36.66 37.22 37.56
SSIM↑ 0.977 0.986 0.989 0.990 0.990 0.981 0.987 0.990 0.990 0.990
LPIPS↓ 0.041 0.031 0.028 0.027 0.027 0.034 0.029 0.027 0.026 0.026

Bird
PSNR↑ 30.72 33.22 32.06 34.91 34.88 30.97 33.84 34.73 35.47 35.91
SSIM↑ 0.985 0.987 0.986 0.990 0.990 0.987 0.989 0.990 0.990 0.991
LPIPS↓ 0.029 0.027 0.030 0.025 0.025 0.028 0.026 0.025 0.024 0.023

Playdoh
PSNR↑ 34.50 40.38 41.47 41.23 41.80 35.51 40.92 41.22 41.93 41.74
SSIM↑ 0.988 0.993 0.994 0.994 0.994 0.989 0.993 0.994 0.994 0.994
LPIPS↓ 0.027 0.022 0.022 0.021 0.021 0.027 0.023 0.022 0.021 0.021

Cat
PSNR↑ 37.25 41.34 41.77 42.37 42.94 36.66 40.43 42.17 43.32 43.49
SSIM↑ 0.993 0.996 0.996 0.997 0.997 0.993 0.995 0.996 0.997 0.997
LPIPS↓ 0.020 0.018 0.017 0.016 0.016 0.026 0.024 0.018 0.014 0.014

Trophy
PSNR↑ 32.35 34.76 34.82 35.01 35.13 31.86 34.54 34.78 35.00 35.19
SSIM↑ 0.966 0.969 0.969 0.970 0.970 0.966 0.969 0.969 0.970 0.970
LPIPS↓ 0.033 0.031 0.031 0.031 0.031 0.035 0.032 0.032 0.031 0.031

Average
PSNR↑ 33.41 37.38 38.16 38.38 39.11 33.83 37.54 38.54 39.17 39.51
SSIM↑ 0.985 0.989 0.990 0.990 0.991 0.986 0.990 0.991 0.991 0.991
LPIPS↓ 0.025 0.022 0.021 0.021 0.020 0.026 0.023 0.021 0.019 0.019

Table 11. Comparison of PSNR↑, SSIM↑, and LPIPS↓ on geometric (re)correction when the number of iterations in Algorithm 1 is
changed. The scores were calculated using the images in the training set.

PAC-NeRF-3v +LPO2 +LPO3 +LPO4 PAC-NeRF-3v† +LPO2 +LPO3 +LPO4

Droplet log10(µ) 0.140 0.136 0.111 0.112 0.136 0.129 0.084 0.082
log10(κ) 1.285 1.447 1.784 1.628 1.263 1.053 0.097 0.106

Letter log10(µ) 0.674 0.023 1.264 0.015 0.379 0.013 0.053 0.010
log10(κ) 6.772 0.325 1.424 0.174 5.229 0.507 0.589 0.060

Cream

log10(µ) 0.311 0.200 0.115 0.178 0.179 0.031 0.066 0.100
log10(κ) 0.215 0.384 0.392 0.158 0.336 0.157 0.060 0.121
log10(τY ) 0.014 0.032 0.031 0.004 0.009 0.007 0.005 0.006
log10(η) 0.281 0.209 0.198 0.183 0.195 0.105 0.026 0.033

Toothpaste

log10(µ) 1.891 0.264 0.246 0.109 0.252 0.259 0.026 0.031
log10(κ) 1.580 1.439 1.434 0.601 1.436 1.382 0.888 0.673
log10(τY ) 0.201 0.118 0.116 0.114 0.199 0.168 0.137 0.093
log10(η) 0.373 0.200 0.180 0.003 0.212 0.187 0.005 0.009

Torus log10(E) 0.277 0.055 0.053 0.061 0.074 0.049 0.040 0.036
ν 0.085 0.129 0.050 0.001 0.131 0.032 0.060 0.007

Bird log10(E) 0.449 0.136 0.146 0.067 0.123 0.158 0.084 0.027
ν 0.102 0.466 0.037 0.001 0.141 0.009 0.056 0.047

Playdoh
log10(E) 0.290 0.403 0.190 0.116 0.521 0.303 0.260 0.133
log10(τY ) 0.283 0.075 0.215 0.165 0.110 0.119 0.105 0.173

ν 0.495 0.092 0.236 0.111 0.212 0.218 0.082 0.063

Cat
log10(E) 1.301 1.120 1.051 0.973 1.192 0.584 0.687 0.706
log10(τY ) 0.120 0.119 0.111 0.107 0.084 0.062 0.070 0.067

ν 0.044 0.079 0.104 0.004 0.118 0.054 0.024 0.003

Trophy θfric [rad] 0.053 0.058 0.053 0.055 0.030 0.036 0.046 0.039

Table 12. Comparison of the absolute differences between the ground-truth and estimated physical properties on physical identification
when the number of iterations in Algorithm 1 is changed. The smaller the values, the better the performance.

8



PAC-NeRF-3v† +LPO +LPO-F +LPO-P +GO +LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

PSNR↑ 28.18±.43 29.60±.59 28.89±.45 29.40±.55 28.91±.45 29.88±.53 29.34±.51 29.81±.54 28.79±.44 28.49±.45
SSIM↑ 0.979±.001 0.981±.001 0.980±.001 0.981±.001 0.980±.001 0.982±.001 0.981±.001 0.982±.001 0.981±.001 0.981±.001
LPIPS↓ 0.036±.002 0.034±.003 0.035±.002 0.035±.003 0.035±.002 0.031±.002 0.032±.002 0.033±.003 0.033±.002 0.034±.002

Table 13. Comparison of PSNR↑, SSIM↑, and LPIPS↓ averaged over five view settings on geometric correction and recorrection.

C. Experiments on other view settings
In the main text (Section 4), we investigate the performance
when three specific views are selected as training data. In
this appendix, experiments were conducted using other set-
tings to investigate the versatility of the proposed method.
In particular, we investigated the robustness of the selec-
tion of views (Appendix C.1) and the number of views (Ap-
pendix C.2).

C.1. Robustness of the selection of views

In the main text (Section 4), we investigate the perfor-
mance when three specific views are selected as training
data. We examined the performance when the training set
was changed to investigate the robustness of the selection of
views. Specifically, we investigated performance when five
different view sets were used for training. The number of
views used for training was fixed at three, and the remaining
eight were used for testing.
Compared models. We used PAC-NeRF-3v† as the base-
line and applied +LPO and +LPO4. Furthermore, we exam-
ined the performances of the ablated and comparative mod-
els. Specifically, in the evaluation of the geometry correc-
tion, we examined the performance when +LPO-F, +LPO-
P, and +GO were applied to the baseline. In the evaluation
of the physical identification and geometric recorrection,
we examined the performance when +LPO-F4, +LPO-P4,
+GO4, and +None4 were applied to the baseline.
Results. Table 13 summarizes the geometric correction
and recorrection results. We observed tendencies similar to
those for the results when three specific views were used for
training (see Appendix B.1). Specifically, with respect to
geometry correction, +LPO outperformed not only the base-
line (PAC-NeRF-3v†) but was also superior to or compara-
ble to the ablated and comparative models, including +LPO-
F, +LPO-P, and +GO. Similarly, with respect to geome-
try recorrection, +LPO4 outperformed not only the baseline
(PAC-NeRF-3v†) but was also superior to or comparable to
the ablated and comparative models, including +LPO-F4,
+LPO-P4, +GO4, and +None4. In terms of physical prop-
erty identification, +LPO4 outperformed PAC-NeRF-3v†,
+LPO-F4, +LPO-P4, +GO4, and +None4 in the 20.8±1.2,
15.2±2.0, 16.6±2.0, 17.8±1.2, and 18.8±1.9 cases, re-
spectively, across the 23 properties for each view setting.
These results indicate that the joint optimization of features
and positions in Lagrangian space is effective for geometry-
agnostic system identification, regardless of the selection of
views used for training.

C.2. Robustness of the number of views

In the main experiment (Section 4) and the above exper-
iments (Appendix C.1), we investigated the performance
when the number of views in the training set was three. To
investigate the robustness of the number of views, we ex-
amined the performance when the number of views in the
training set was changed to six. Specifically, among the 11
views in the dataset, six were used for training, and the re-
maining five were used for testing.
Compared models. We used PAC-NeRF-6v, that is, PAC-
NeRF [6] trained with six views, as the baseline. In pre-
liminary experiments, we found that PAC-NeRF-6v demon-
strated reasonable performance without the advanced tech-
niques described in Appendix A owing to the increase in
the number of views. Therefore, we only used this model
as the baseline. We applied +LPO and +LPO4 to the base-
line. Furthermore, we investigated the performances of the
ablated and comparative models. Specifically, in the eval-
uation of the geometry correction, we investigated the per-
formance when +LPO-F, +LPO-P, and +GO were applied
to the baseline. In the evaluation of the physical identifi-
cation and geometric recorrection, we investigated the per-
formance when +LPO-F4, +LPO-P4, +GO4, and +None4

were applied to the baseline.
Results. Tables 14, 15, and 16 summarize the results of
geometry correction, physical identification, and geometry
reconstruction, respectively. Similar tendencies were ob-
served when the number of views in the training set was
three (as discussed in Section 4 and Appendix C.1). Specif-
ically, with respect to geometry correction, +LPO outper-
formed not only the baseline (PAC-NeRF-6v) but also the
ablated and comparative models, including +LPO-F, +LPO-
P, and +GO, in most cases. On physical identification and
geometry recorrection, +LPO4 outperformed not only the
baseline (PAC-NeRF-6v) but also the ablated and compar-
ative models, including +LPO-F4, +LPO-P4, +GO4, and
+None4, in most cases. These results indicate that the joint
optimization of features and positions in Lagrangian space
is effective for geometry-agnostic system identification, re-
gardless of the number of views used for training.

9



PAC-NeRF PAC-NeRF-6v +LPO +LPO-F +LPO-P +GO

Droplet
PSNR↑ 35.29 28.92 30.58 29.82 30.47 29.13
SSIM↑ 0.989 0.982 0.984 0.983 0.984 0.983
LPIPS↓ 0.030 0.042 0.040 0.041 0.040 0.042

Letter
PSNR↑ 36.99 31.42 32.85 32.36 32.62 32.32
SSIM↑ 0.992 0.985 0.987 0.987 0.986 0.986
LPIPS↓ 0.011 0.020 0.019 0.019 0.019 0.020

Cream
PSNR↑ 36.46 30.36 31.31 31.13 30.89 30.80
SSIM↑ 0.993 0.986 0.987 0.987 0.986 0.987
LPIPS↓ 0.014 0.021 0.019 0.019 0.020 0.019

Toothpaste
PSNR↑ 38.84 34.74 35.82 35.27 35.58 34.79
SSIM↑ 0.996 0.993 0.994 0.993 0.993 0.993
LPIPS↓ 0.006 0.009 0.009 0.009 0.009 0.009

Torus
PSNR↑ 34.60 29.28 32.31 30.82 31.80 30.80
SSIM↑ 0.988 0.979 0.984 0.981 0.984 0.982
LPIPS↓ 0.026 0.035 0.030 0.033 0.030 0.034

Bird
PSNR↑ 35.70 27.38 30.48 28.67 30.39 28.09
SSIM↑ 0.992 0.981 0.984 0.982 0.984 0.981
LPIPS↓ 0.019 0.029 0.025 0.027 0.025 0.028

Playdoh
PSNR↑ 36.55 29.74 31.01 29.93 30.99 29.84
SSIM↑ 0.991 0.982 0.983 0.982 0.983 0.982
LPIPS↓ 0.026 0.039 0.037 0.039 0.037 0.039

Cat
PSNR↑ 37.10 30.77 31.40 30.85 31.33 30.72
SSIM↑ 0.993 0.989 0.987 0.989 0.988 0.988
LPIPS↓ 0.016 0.024 0.026 0.025 0.026 0.025

Trophy
PSNR↑ 32.23 30.22 30.97 30.38 30.85 30.23
SSIM↑ 0.965 0.962 0.964 0.963 0.963 0.962
LPIPS↓ 0.036 0.039 0.037 0.039 0.038 0.039

Average
PSNR↑ 35.97 30.31 31.86 31.03 31.66 30.75
SSIM↑ 0.989 0.982 0.984 0.983 0.984 0.983
LPIPS↓ 0.020 0.029 0.027 0.028 0.027 0.028

Table 14. Comparison of PSNR↑, SSIM↑, and LPIPS↓ for each scene on geometric correction when the number of views in a training set
was six.

PAC-NeRF PAC-NeRF-6v +LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

Droplet log10(µ) 0.039 0.026 0.016 0.039 0.025 0.042 0.039
log10(κ) 0.017 0.386 0.045 0.128 0.076 0.404 0.144

Letter log10(µ) 0.041 0.229 0.175 0.220 0.199 0.222 0.224
log10(κ) 0.039 0.166 0.006 0.021 0.060 0.064 0.089

Cream

log10(µ) 0.090 0.131 0.056 0.047 0.065 0.057 0.065
log10(κ) 0.132 0.835 0.146 0.020 0.143 0.072 0.132
log10(τY ) 0.007 0.011 0.001 0.003 0.001 0.003 0.012
log10(η) 0.015 0.287 0.049 0.060 0.075 0.088 0.134

Toothpaste

log10(µ) 0.026 0.084 0.045 0.179 0.144 0.208 0.166
log10(κ) 0.247 0.629 0.580 0.370 0.655 0.654 0.573
log10(τY ) 0.066 0.088 0.036 0.090 0.062 0.101 0.097
log10(η) 0.013 0.015 0.006 0.022 0.006 0.018 0.018

Torus log10(E) 0.019 0.020 0.023 0.019 0.025 0.032 0.025
ν 0.023 0.024 0.001 0.057 0.035 0.139 0.058

Bird log10(E) 0.013 0.106 0.047 0.105 0.058 0.119 1.769
ν 0.029 0.133 0.013 0.134 0.147 0.146 0.741

Playdoh
log10(E) 0.286 0.483 0.252 0.311 0.282 0.310 0.289
log10(τY ) 0.038 0.209 0.126 0.203 0.171 0.184 0.180

ν 0.076 0.317 0.110 0.135 0.141 0.130 0.193

Cat
log10(E) 0.855 2.821 0.787 0.949 0.843 2.423 0.745
log10(τY ) 0.026 0.978 0.008 0.005 0.024 0.393 0.020

ν 0.027 0.071 0.017 0.065 0.026 0.218 0.026

Trophy θfric [rad] 0.048 0.052 0.035 0.040 0.041 0.044 0.044

Table 15. Comparison of the absolute differences between the ground-truth and estimated physical properties for each scene on physical
identification when the number of views in a training set was six. The smaller the values, the better the performance.
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PAC-NeRF PAC-NeRF-6v +LPO4 +LPO-F4 +LPO-P4 +GO4 +None4

Droplet
PSNR↑ 35.29 28.92 30.72 29.64 31.26 27.66 28.73
SSIM↑ 0.989 0.982 0.986 0.984 0.986 0.981 0.983
LPIPS↓ 0.030 0.042 0.037 0.041 0.039 0.044 0.042

Letter
PSNR↑ 36.99 31.42 32.70 32.69 32.66 32.13 32.25
SSIM↑ 0.992 0.985 0.989 0.989 0.988 0.987 0.987
LPIPS↓ 0.011 0.020 0.017 0.016 0.018 0.018 0.018

Cream
PSNR↑ 36.46 30.36 32.11 31.78 31.48 30.65 30.34
SSIM↑ 0.993 0.986 0.988 0.988 0.987 0.987 0.987
LPIPS↓ 0.014 0.021 0.018 0.019 0.020 0.019 0.020

Toothpaste
PSNR↑ 38.84 34.74 34.91 34.44 35.35 33.52 34.84
SSIM↑ 0.996 0.993 0.994 0.994 0.994 0.993 0.994
LPIPS↓ 0.006 0.009 0.009 0.009 0.009 0.009 0.009

Torus
PSNR↑ 34.60 29.28 32.33 31.57 31.94 30.64 29.58
SSIM↑ 0.988 0.979 0.986 0.984 0.986 0.982 0.982
LPIPS↓ 0.026 0.035 0.028 0.031 0.030 0.032 0.034

Bird
PSNR↑ 35.70 27.38 30.57 28.27 29.67 27.84 25.96
SSIM↑ 0.992 0.981 0.985 0.981 0.983 0.981 0.983
LPIPS↓ 0.019 0.029 0.028 0.029 0.028 0.030 0.035

Playdoh
PSNR↑ 36.55 29.74 30.26 28.83 30.90 29.03 29.65
SSIM↑ 0.991 0.982 0.984 0.981 0.984 0.982 0.984
LPIPS↓ 0.026 0.039 0.037 0.041 0.037 0.040 0.039

Cat
PSNR↑ 37.10 30.77 31.45 31.14 31.11 29.95 31.79
SSIM↑ 0.993 0.989 0.988 0.989 0.988 0.987 0.989
LPIPS↓ 0.016 0.024 0.024 0.024 0.026 0.025 0.023

Trophy
PSNR↑ 32.23 30.22 30.44 29.69 30.64 29.20 30.23
SSIM↑ 0.965 0.962 0.963 0.962 0.963 0.962 0.963
LPIPS↓ 0.036 0.039 0.037 0.039 0.038 0.040 0.039

Average
PSNR↑ 35.97 30.31 31.72 30.89 31.67 30.07 30.37
SSIM↑ 0.989 0.982 0.985 0.983 0.984 0.982 0.983
LPIPS↓ 0.020 0.029 0.026 0.028 0.027 0.029 0.029

Table 16. Comparison of PSNR↑, SSIM↑, and LPIPS↓ for each scene on geometric recorrection when the number of views in a training
set was six.
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D. Qualitative results
This appendix discusses the qualitative results obtained us-
ing several frames selected from the video sequences. We
provide video samples at https://www.kecl.ntt.
co.jp/people/kaneko.takuhiro/projects/
lpo/.

D.1. Qualitative comparisons among PAC-NeRF-
3v/3v†, +LPO, and +LPO4

• Figure 3:
Qualitative comparisons among PAC-NeRF-3v/3v†,
+LPO, and +LPO4 on Newtonian fluids (Droplet and
Letter).

• Figure 4:
Qualitative comparisons among PAC-NeRF-3v/3v†,
+LPO, and +LPO4 on non-Newtonian fluids (Cream and
Toothpaste).

• Figure 5:
Qualitative comparisons among PAC-NeRF-3v/3v†,
+LPO, and +LPO4 on elasticity materials (Torus and
Bird).

• Figure 6:
Qualitative comparisons among PAC-NeRF-3v/3v†,
+LPO, and +LPO4 on plasticine materials (Playdoh and
Cat).

• Figure 7:
Qualitative comparisons among PAC-NeRF-3v/3v†,
+LPO, and +LPO4 on granular media (Trophy).

D.2. Qualitative comparisons among +LPO4,
+LPO-F4, +LPO-P4, +GO4, and +None4

• Figure 8:
Qualitative comparisons among +LPO4, +LPO-F4,
+LPO-P4, +GO4, and +None4 in the scenes where
+LPO-P4 outperformed +LPO-F4.

• Figure 9:
Qualitative comparisons among +LPO4, +LPO-F4,
+LPO-P4, +GO4, and +None4 in the scenes where
+LPO-F4 outperformed +LPO-P4.
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Figure 3. Qualitative comparisons among PAC-NeRF-3v/3v†, +LPO, and +LPO4 on Newtonian fluids (Droplet and Letter). Blue fonts
indicate the scores obtained by the baselines (PAC-NeRF-3v/3v†). Red fonts indicate the scores obtained by the proposed methods (+LPO
and +LPO4). Given the initial estimation by the baseline (b)(e), +LPO first corrects the geometric structures (including appearance and
shape) (c)(f). By repeatedly conducting physical identification and geometric correction via Algorithm 1, +LPO4 reidentifies physical
properties and recorrects geometric structures (d)(g). In the Droplet scene, the bottom of the droplet is sharply pointed, and its tip is
whitened in the baseline (b)(e). They are gradually mitigated by applying +LPO (c)(f) and +LPO4 (d)(g). In the Letter scene, +LPO (c)(f)
and +LPO4 (d)(g) succeed in gradually eliminating artifacts existing in the vicinity of the left line of the letter “R.”, which arise in the
baselines (b)(e).
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(a) Ground truth (b) PAC-NeRF-3v (c) +LPO (proposed) (d) +LPO4 (proposed) (e) PAC-NeRF-3v† (f) +LPO (proposed) (g) +LPO4 (proposed)

Figure 4. Qualitative comparisons among PAC-NeRF-3v/3v†, +LPO, and +LPO4 on non-Newtonian fluids (Cream and Toothpaste). Blue
fonts indicate the scores obtained by the baselines (PAC-NeRF-3v/3v†). Red fonts indicate the scores obtained by the proposed methods
(+LPO and +LPO4). Given the initial estimation by the baseline (b)(e), +LPO first corrects the geometric structures (including appearance
and shape) (c)(f). By repeatedly conducting physical identification and geometric correction via Algorithm 1, +LPO4 reidentifies physical
properties and recorrects geometric structures (d)(g). In the Cream scene, the baselines (b)(e) fail to color the materials correctly. This
failure is alleviated by +LPO (c)(f) and further mitigated by +LPO4 (d)(g). In the Toothpaste scene, the baselines (b)(e) make the material
darker color than that in the ground truth (a). +LPO (c)(f) makes the material brighter, and +LPO4 (d)(g) obtains the color closer to the
ground truth (a). This effect is pronounced when PAC-NeRF-3v† (e) is used as a baseline.
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(a) Ground truth (b) PAC-NeRF-3v (c) +LPO (proposed) (d) +LPO4 (proposed) (e) PAC-NeRF-3v† (f) +LPO (proposed) (g) +LPO4 (proposed)

Figure 5. Qualitative comparisons among PAC-NeRF-3v/3v†, +LPO, and +LPO4 on elasticity materials (Torus and Bird). Blue fonts
indicate the scores obtained by the baselines (PAC-NeRF-3v/3v†). Red fonts indicate the scores obtained by the proposed methods (+LPO
and +LPO4). Given the initial estimation by the baseline (b)(e), +LPO first corrects the geometric structures (including appearance and
shape) (c)(f). By repeatedly conducting physical identification and geometric correction via Algorithm 1, +LPO4 reidentifies physical
properties and recorrects geometric structures (d)(g). In the Torus scene, the baselines (b)(e) have difficulty correctly capturing color and
shape. They are improved by applying +LPO (c)(f), and the fine details are also improved by utilizing +LPO4 (d)(g). Also, in the Bird
scene, the baselines (b)(e) fail to capture color and shape correctly. The shape (e.g., the directions of the tail) is first corrected by +LPO
(c)(f), and then the color is corrected by +LPO4 (d)(g).
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Figure 6. Qualitative comparisons among PAC-NeRF-3v/3v†, +LPO, and +LPO4 on plasticine materials (Playdoh and Cat). Blue fonts
indicate the scores obtained by the baselines (PAC-NeRF-3v/3v†). Red fonts indicate the scores obtained by the proposed methods (+LPO
and +LPO4). Given the initial estimation by the baseline (b)(e), +LPO first corrects the geometric structures (including appearance and
shape) (c)(f). By repeatedly conducting physical identification and geometric correction via Algorithm 1, +LPO4 reidentifies physical
properties and recorrects geometric structures (d)(g). In the Playdoh scene, the baselines (b)(e) make the playdoh a little crushed compared
to the ground truth (a). These geometric failures are gradually alleviated by applying +LPO (c)(f) and +LPO4 (d)(g). In the Cat scene, the
baselines (b)(e) fail to capture the tail of the cat in the lower left corner. +LPO (c)(f) and +LPO4 (d)(g) struggle to recover it.
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Figure 7. Qualitative comparisons among PAC-NeRF-3v/3v†, +LPO, and +LPO4 on granular media (Trophy). Blue fonts indicate the
scores obtained by the baselines (PAC-NeRF-3v/3v†). Red fonts indicate the scores obtained by the proposed methods (+LPO and +LPO4).
Given the initial estimation by the baseline (b)(e), +LPO first corrects the geometric structures (including appearance and shape) (c)(f).
By repeatedly conducting physical identification and geometric correction via Algorithm 1, +LPO4 reidentifies physical properties and
recorrects geometric structures (d)(g). In the Trophy scene, the baselines (b)(e) achieve good performance in terms of physical identification
(comparable with PAC-NeRF with full-view supervision). However, they tend to make the trophy darker than the ground truth (a). This
misestimation is corrected by +LPO and +LPO4.
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Figure 8. Qualitative comparisons among +LPO4, +LPO-F4, +LPO-P4, +GO4, and +None4 in the scenes where +LPO-P4 outperformed
+LPO-F4 in terms of PSNR. In the +LPO-F4, position (that is, shape) optimization was ablated, and only feature (that is, appearance)
optimization was conducted. In the +LPO-P4, feature (that is, appearance) optimization was ablated, and only position (that is, shape)
optimization was conducted. In the above scenes, large geometric gaps exist between the ground truth (a) and PAC-NeRF-3v† (b). For
example, in the second row of the Droplet scene, the bottom of the droplet is flat in the ground truth (a), while that is bulging in PAC-
NeRF-3v† (b). As shown in (d), only appearance correction by +LPO-F4 is insufficient to correct this geometry failure estimation, and
the bottom of the droplet is still bulging. Instead, +LPO-F4 attempts to solve this problem by changing the appearance, making the colors
overcorrected. In contrast, shape correction by +LPO-P4 effectively addresses this failure, and the bottom of the droplet is flat in (e). The
same correction was also conducted in +LPO4 (c), a combination of +LPO-F4 and +LPO-P4. Similarly, in the Bird scene, the directions
of the tail are adequately corrected in +LPO4 (c) and +LPO-P4 (e). In contrast, those are not sufficiently conducted in +LPO-F4 (d). Also,
in this case, +LPO-F4 (d) attempts to solve this problem by overcorrecting the colors. +GO4 (f), which also only corrects appearance, has
the same difficulty as +LPO-F4 (d). In the Droplet scene, the bottom of the droplet is bulging; in the Bird scene, the bird’s tail is corrupted.
+None4 (g), which performs Algorithm 1 without geometry correction, does not have a sufficient correction ability. In the Droplet scene,
shape and appearance are almost identical to those in PAC-NeRF-3v† (b). In the Bird scene, the pose of the bird is not corrected.
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Figure 9. Qualitative comparisons among +LPO4, +LPO-F4, +LPO-P4, +GO4, and +None4 in the scenes where +LPO-F4 outperformed
+LPO-P4 in terms of PSNR. In the +LPO-F4, position (that is, shape) optimization was ablated, and only feature (that is, appearance)
optimization was conducted. In the +LPO-P4, feature (that is, appearance) optimization was ablated, and only position (that is, shape)
optimization was conducted. As discussed in Figure 8, +LPO-F4 is unsuitable for significantly correcting the geometric shape because
it focuses on correcting appearance. However, as shown in the above scenes, when PAC-NeRF-3v† (b) captures the geometric structure
relatively well, +LPO-F4 (d) also works well because appearance correction is more important than shape correction. For example, in the
Letter scene, +LPO-F4 (d) succeeds in eliminating artifacts existing in the vicinity of the left line of the letter “R.” In the Toothpaste scene,
+LPO-F4 (d) succeeds in making the color of the material brighter and closer to the ground truth (a). Notably, in both scenes, +None4

(g) fails to do so and produces almost the same results as those in PAC-NeRF-3v† (b). These results indicate that appearance correction
by +LPO-F4 is essential (simple iterative updates in Algorithm 1 are insufficient) to address these problems. Another interesting finding
is that +LPO-P4 (e), which focuses on correcting shape, also works well. For example, in the Letter scene, +LPO-P4 (e) eliminates the
artifacts existing in the vicinity of the left line of the letter “R,” and in the Toothpaste scene, it makes the material brighter. This is possible
because moving correctly colored particles from other places allows for appearance changes.
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E. Implementation details
E.1. Dataset

We investigated the benchmark performance on the dataset
provided by the original study on PAC-NeRF [6]. This
dataset comprised nine scenes and various continuum ma-
terials, including the following:

• Newtonian fluids with fluid viscosity µ and bulk modulus
κ:
– Droplet with µ = 200 and κ = 105

– Letter with µ = 100 and κ = 105

• Non-Newtonian fluids with shear modulus ν, bulk modu-
lus κ, yield stress τY , and plasticity viscosity η:
– Cream with ν = 104, κ = 106, τY = 3 × 103, and
η = 10

– Toothpaste with ν = 5× 103, κ = 105, τY = 200, and
η = 10

• Deformable solid with Young’s modulus E and Poisson’s
ratio ν:
– Torus with E = 106 and ν = 0.3
– Bird with E = 3× 105 and ν = 0.3

• Plasticine with Young’s modulus E, Poisson’s ratio ν, and
yield stress τY :
– Cat with E = 2× 106, ν = 0.3, and τY = 1.54× 104

– Playdoh with E = 106, ν = 0.3, and τY = 3.85× 103

• Granular media with friction angle θfric:
– Trophy with θfric = 40◦

In each scene, the objects fall freely under the influence
of gravity and undergo collisions. The ground-truth sim-
ulation data were generated using the MLS-MPM frame-
work [2]. A photorealistic simulation engine rendered ob-
jects under diverse environmental lighting conditions and
ground textures. Each scene was captured from 11 view-
points with cameras evenly spaced on the upper hemi-
sphere, including the object. To evaluate our method in
sparse-view settings, three views were used for training, and
the remaining eight views were used for testing in the main
experiments (Section 4) and the experiments described in
Appendix C.1. Six views were used for training, and the
remaining five were used for testing in the experiments de-
scribed in Appendix C.2. Data were downloaded from the
website14 provided by the authors of PAC-NeRF [6].

E.2. Model

The models were implemented based on the official PAC-
NeRF source code.14 For simplicity and fair comparison,
we used the default model configurations provided in the
source code for the experiments. Specifically, the archi-
tecture of a discretized voxel-based NeRF followed direct
voxel grid optimization [8], in which a volume density field
σG (Equation (7)) and color field cG (Equation (8)) were

14https://github.com/xuan-li/PAC-NeRF

represented by voxel grids, and a 2-layer MLP with a hid-
den dimension of 128 was applied to cG with positional em-
bedding for a view direction d. Regarding a differentiable
MPM, DiffTaichi [3] was used.

E.3. Training settings

For simplicity and fair comparison, we conducted Eulerian
static voxel grid optimization (Figure 2(1)) and physical
property optimization (Figure 2(2)) using the default train-
ing settings provided in the source code14, in PAC-NeRF,
PAC-NeRF-3v, and PAC-NeRF-6v, except that the number
of views was changed. In PAC-NeRF-3v†, we applied the
three modifications described in Appendix A (scheduling
of Lsurf , introduction of LV I

pixel, and adjustment of training
length) to the Eulerian static voxel grid optimization and
adopted the default training settings for physical property
optimization. For the LPO (Figure 2(3)), we trained the
features and positions of the particles for 100 iterations us-
ing the Adam optimizer [5]. In particular, we optimized the
features of the particles at a learning rate of 0.1, which is
the default value used for training the feature grids in the
Eulerian static voxel grid optimization. The positions of the
particles were optimized at a learning rate of dx

32 , where dx
indicates the voxel grid size and differs depending on the
scene (set in the configuration files in the source code14).
In a preliminary experiment, we found that careful setting
of this learning rate is vital for stable training because the
particles can diverge when the learning rate is exceptionally
high. Based on this observation, we use a learning rate ad-
justed according to dx. We set the momentum terms of the
Adam optimizer, β1 and β2, to 0.9 and 0.999, respectively.

E.4. Evaluation metrics

Evaluation of geometric (re)correction. We evaluated the
performance of the geometric (re)correction using metrics
commonly used to assess the performance of novel view
synthesis in NeRF studies: the peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM) [9], and learned
perceptual image patch similarity (LPIPS) [11]. For PSNR
and SSIM, the larger the values, the better the performance.
For LPIPS, the smaller the values, the better the perfor-
mance. In particular, we report the scores averaged over
the video sequences in a test set.

Evaluation of physical identification. To evaluate the per-
formance of the physical identification, we measured the
absolute distance between the ground truth and the esti-
mated physical properties. The values of the ground-truth
physical properties are provided in Appendix E.1. For an
easy comparison, we calculated these distances after adjust-
ing the scale (i.e., either a logarithmic scale or a linear scale)
following the study of PAC-NeRF [6]. The smaller the val-
ues, the better the performance.
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