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Figure 1. 3D motions generated by Multi-view Ancestral Sampling (MAS) — each one using a different initial noise. Our method generates
novel 3D motions using a 2D diffusion model. As such, it enables learning intricate 3D motion synthesis solely from monocular video
data.

Abstract

We introduce Multi-view Ancestral Sampling (MAS), a
method for 3D motion generation, using 2D diffusion mod-
els that were trained on motions obtained from in-the-wild
videos. As such, MAS opens opportunities to exciting and
diverse fields of motion previously under-explored as 3D
data is scarce and hard to collect. MAS works by simultane-
ously denoising multiple 2D motion sequences representing
different views of the same 3D motion. It ensures consis-
tency across all views at each diffusion step by combining
the individual generations into a unified 3D sequence, and
projecting it back to the original views. We demonstrate
MAS on 2D pose data acquired from videos depicting pro-
fessional basketball maneuvers, rhythmic gymnastic perfor-
mances featuring a ball apparatus, and horse races. In each
of these domains, 3D motion capture is arduous, and yet,
MAS generates diverse and realistic 3D sequences. Un-
like the Score Distillation approach, which optimizes each
sample by repeatedly applying small fixes, our method uses
a sampling process that was constructed for the diffusion
framework. As we demonstrate, MAS avoids common is-
sues such as out-of-domain sampling and mode-collapse.
https://guytevet.github.io/mas-page/

A. The MAS algorithm
Algorithm 1 describes the MAS sampling process.

B. Performance Details
Table 1 displays the time needed for a single sample gener-
ation and the GPU memory it consumes.

MAS DreamFusion ElePose MotionBert
Time[sec] 9 17 2.3 · 10−3 1
Memory[MB] 794 794 686 784

Table 1. Time and memory costs per single sample generation.

C. Dynamic View-point Sampling
Keeping the optimized views constant could theoretically
lead to overfitting a motion to the optimized views, while
novel views might have a lower quality. Note that this prob-
lem arises only at a lower number of views (< 5). For this
reason, we suggest a way to re-sample the viewing-points:
After every step, we can save X(i) and the 3D noise sam-
ple used ϵ

(i)
3D. When trying to sample xt for a newly sam-

pled view v we can then take all X(0), ..., X(T−t), and all
ϵ
(0)
3D, ..., ϵ

(T−t)
3D and project them to view v. We can then ap-

ply a sampling loop using the projections, just like we did
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Algorithm 1 Multi-view Ancestral Sampling (MAS)

Sample camera views: v1:V ∼ V
Initialize 3D noise: ε3D ∼ NL×J×3 (0, I)
Initialize views by projection: x1:V

T = P (ε3D, v1:V )
for t = T, T − 1, ..., 0 do

x̂1:V
0 = G2D

(
x1:V
t

)
Triangulate: X = argmin

X′∈RL×J×3

||P (X ′, v1:V )− x̂1:V
0 ||22 ▷ X, ε3D ∈ RL×J×3

Back-project: x̃1:V
0 = P (X, v1:V )

▷ x1:V
t , x̂1:V

0 , x̃1:V
0 , ε1:V ∈ RV×L×J×2

Sample noise: ε3D ∼ NL×J×3 (0, I)
Project noise: ε1:V = P (ε3D, v1:V )

Denoising step: x1:V
t−1 =

βt
√
ᾱt−1

1−ᾱt
x1:V
t +

(1−ᾱt−1)
√
αt

1−ᾱt
x̃1:V
0 + βt(1−ᾱt−1)

1−ᾱt
ε1:V

end for
Output triangulation: argmin

X′
||P (X ′, v1:V )− x1:V

0 ||22

in the original algorithm. We observe that in our setting,
this method does not lead to significant improvement so we
present it as an optional addition.

D. Data Collection

To demonstrate the merits of MAS we collected three 2D
motion datasets, extracted from in-the-wild videos.

NBA videos. We collected about 10K videos from the
NBA online API1. We then applied multi-person tracking
using ByteTrack [9], and AlphaPose [1] for 2D human pose
estimation (based on the tracking results). We finally pro-
cessed and filtered the data by centering the people, filtering
short motions, crowd motions, and motions of low quality,
splitting discontinuous motions (caused typically by track-
ing errors), mirroring, and applying smoothing interpola-
tions.

Horse jumping contests. We collected 3 horse jumping
contest videos (around 2-3 hours each) from YouTube.com.
We then apply YoloV7 [5] for horse detection and tracking
and VitPose [6] trained on APT-36K [7] for horse pose esti-
mation. The post-processing pipeline was similar to the one
described above.

Rhytmic-ball gymnastics. We used the Rhythmic Gym-
nastics Dataset [8] to get 250 videos, about 1.5 minutes long
each, of high-standard international competitions of rhyth-
mic gymnastics performance with a ball. We followed the
pipeline described for NBA videos to obtain athletes’ mo-
tions and also use YoloV7 [5] for detecting bounding boxes
of sports balls. We take the closest ball to the athlete at each
frame and add the center of the bounding box as an addi-
tional ”joint” in the motion representation.

All motions are represented as x ∈ RL×J×2, where
NBA is using the AlphaPose body model with 16 joint,

1https://github.com/swar/nba_api

horses represented according to APT-36K with 17 joints
and the gymnastics dataset is represented with the COCO
body model [2] with 17 joints plus additional joint for the
ball. All 2D pose predictions are accompanied by confi-
dence predictions per joint per frame which are used in the
diffusion training process.

E. Additional Experiments
Table 2 presents a comparison of our method with off-the-
shelf SOTA methods for supervised pose lifting - Motion-
BERT [11], unsupervised pose lifting - ElePose [4], and
DreamFussion [3] adaptation. MAS is on par with the lift-
ing method for the more challenging side views.

Table 3 depicts an ablation study for the number of
views, camera distance, and diffusion steps.

Figure 2 presents a screenshot from the user study pre-
sented in the paper, including the wording of the questions
for each of the three aspects - Precision, Diversity, and
Quality.

F. Gradient Update Formula
In order to clarify the difference between SDS and our
method, we calculate the gradient update formula w.r.t our
optimized loss. Denote by X(i) the optimizing motion at
iteration i. When differentiating our loss w.r.t X(i) we get:

∇X(i)∥P
(
X(i)

)
− x̂0∥22 (1)

=

(
P
(
X(i)

)
− xt −

√
1− ᾱtϵϕ (xt)√

ᾱt

)
∂p

∂X(i)
(2)

which is clearly differers from ∇LSDS. Let us observe sub-
stituting our xt sampling with a simple forward diffusion:
xt =

√
ᾱtP

(
X(i−1)

)
+
(√

1− ᾱ
)
ε - as used in DreamFu-

sion. (This formulation is also analyzed in HIFA [10]):
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FID↓ Diversity→ Precision↑ Recall↑
View Angles All Side All Side All Side All Side
Human3.6M (GT) 7.34±0.18 10.74±0.15 0.52±0.01 0.91±0.005

ElePose 11.20±0.36 24.13±0.16 10.67±0.05 10.24±0.08 0.47±0.02 0.41±0.01 0.80±0.01 0.25±0.01

MotionBert 14.05±0.14 24.12±0.29 11.46±0.07 11.18±0.06 0.32±0.01 0.21±0.01 0.88±1.21e−03 0.56±0.02

MAS (ours) 15.15±0.16 11.94±0.07 0.21±0.01 0.92±0.01

Table 2. Comparison with pose lifting on Human3.6M dataset. MAS has a competitive performance to lifting methods that were
designed for this dataset. However, MAS outperforms the lifting methods when evaluated from the side view. Here, bold marks the best
results when comparing to the side view.

Figure 2. NBA User study screenshot. A screenshot from the
user study conducted with https://www.pollfish.com/.

∇
X(i)∥P

(
X

(i)
)

− x̂0∥ = (3)

(
P

(
X

(i)
)

−
xt −

√
1 − ᾱtϵϕ (xt)

√
ᾱt

)
∂p

∂Xi

= (4)

P

(
X

(i)
)

−

√
ᾱtP

(
X(i−1)

)
+
√

1 − ᾱtε −
√

1 − ᾱtϵϕ (xt)

√
ᾱt

 ∂p

∂Xi

= (5)

(
P

(
X

(i)
)

− P

(
X

(i−1)
)

+

√
1 − ᾱt
√

ᾱt

(
ε − ϵϕ (xt)

)) ∂p

∂Xi

(6)

If we observe the first iteration of optimization, we have

FID↓ Diversity→ Precision↑ Recall↑
Ground Truth 1.05±.02 8.97±.05 0.73±.01 0.73±.01

#views=2 (120◦) 5.17±.12 9.86±.04 0.42±.03 0.77±.01

#views=3 4.01±.15 9.55±.04 0.53±.02 0.70±.01

#views=5 (ours) 3.92±.15 9.47±.07 0.56±.03 0.67±.01

#views=9 3.94±.12 9.48±.05 0.56±.02 0.67±.01

#views=21 3.94±.12 9.48±.05 0.56±.02 0.67±.01

camera dist=2[m] 7.59±.13 9.36±.05 0.46±.01 0.46±.01

camera dist=3[m] 4.78±.11 9.45±.05 0.53±.01 0.63±.02

camera dist=5[m] 3.99±.12 9.47±.05 0.57±.02 0.67±.01

camera dist=7[m] (ours) 3.92±.15 9.47±.07 0.56±.03 0.67±.01

camera dist=11[m] 4.04±.13 9.48±.05 0.55±.02 0.66±.01

camera dist=30[m] 4.29±.14 9.49±.05 0.55±.02 0.65±.01

diff steps=20 5.14±.13 9.04±.01 0.68±.01 0.42±.01

diff steps=50 5.49±.13 8.99±.04 0.68±.02 0.36±.01

diff steps=100 (ours) 3.92±.15 9.47±.07 0.56±.03 0.67±.01

Table 3. NBA Dataset Ablations. Performance saturates for num-
ber of views ≥ 5; Optimal performance achieved at camera dis-
tance (dist) around 7 meters; Fewer diffusion steps harm recall and
FID.

X(i) = X(i−1) so we get:

∇X∥P (X)− x̂0∥22 =

√
1− ᾱt√
ᾱt

(ε− ϵϕ (xt))
∂p

∂X
(7)

This shows that SDS loss is a special case of our loss
when sampling xt =

√
ᾱtP

(
X(i−1)

)
+
(√

1− ᾱ
)
ε (where

ε ∼ N (0, I)), and applying only a single optimization step
(after the first step, X(i) ̸= X(i−1)).

G. Theorems

Theorem 1. Let ε =

xε

yε
zε

 ∼ N (0, I3×3) and let P ∈

R2×3 be an orthogonal projection matrix, then P · ε ∼
N (0, I2×2).

Proof. First, P ·ε has a normal distribution as a linear com-
bination of normal variables.
In addition, E [P · ε] = P · E [ε] = 0.
Now we will prove that Var [P · ε] = I2×2:

Denote O =

(
1 0 0
0 1 0

)
then we know that P = O · P ′

where P ′ is a rotation matrix, i.e. P ′ · (P ′)
T
= I2×2 . Then
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P · PT = (O · P ′) (O · P ′)
T
=

O ·

I︷ ︸︸ ︷(
P ′P ′T )OT = OOT = I

Furthermore, E
[
ε · εT

]
= E

[
ε · εT

]
−

0︷ ︸︸ ︷
E [ε]E [ε]

T
=

Var [ε] = I .
Therefore:

Var [P · ε] = E
[
(P · ε) (P · ε)T

]
−

0︷ ︸︸ ︷
E [P · ε] ·

0︷ ︸︸ ︷
E [P · ε]T =

E
[
P · ε · εT · PT

]
=

P ·

I︷ ︸︸ ︷
E
[
ε · εT

]
· PT = P · PT = I

Theorem 2. Let X ∈ R3, and denote by
porth (X) , ppers (X) the orthographic and perspective
projections of X to the same view, respectively. We assume
that the subject is centered in the origin and is bounded
in a sphere with radius 1 (∥X∥∞ ≤ 1). We also assume
the perspective projection is dome from distance d from the
origin. Then ∥porth (X)− ppers (X)∥∞ = O

(
1

d−1

)
.

Proof. First, denote the rotation matrix that corresponds to

the view by R ∈ R3×3 and Rxy =

(
1 0 0
0 1 0

)
· R, Rz =(

0 0 1
)
·R. Then

porth (X) = Rxy ·X, ppers (X) =
Rxy ·X

d+Rz ·X
· d

So

porth (X)− ppers (X) =

Rxy ·X − Rxy ·X
d+Rz ·X

· d =
Rxy ·X · (d+Rz ·X − d)

d+Rz ·X
=

Rxy ·X ·Rz ·X
d+Rz ·X

Assume ∥X∥∞ ≤ 1, then
∥∥∥Rxy·X·Rz·X

d+Rz·X

∥∥∥
∞

≤ 1
d−1 .
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