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Supplementary Material

In this supplementary material, details are provided on
the following:
• Dataset details (additional) (8)
• Implementation details (additional) (9)
• SI-MIL additional results (10)
• SI-MIL ablation studies: hyperparameter sensitivity (11)
• SI-MIL ablation studies: model components (12)
• Dataset contribution details (additional) (13)
• Local interpretability analysis (additional) (14)
• Global interpretability analysis (additional) (15)
• Top-K comparative analysis (16)
• Hand-crafted PathExpert feature extraction (17)

8. Dataset details (additional)

We benchmark our SI-MIL on three WSI datasets, namely
TCGA-BRCA, TCGA-Lung, and TCGA-CRC. SI-MIL
necessitates PathExpert features for interpretable predic-
tion. We use HoVer-Net for segmenting and classifying the
nuclei, and afterwards computed hand-crafted PathExpert
features. Since HoVer-Net is trained exclusively on 40×
magnification patches, our analysis is confined to WSIs hav-
ing 40× magnification. This ensures accurate nuclei predic-
tion and thereby meaningful PathExpert feature extraction.

TCGA-BRCA is split into 825 training (653 IDC, 172
ILC) and 85 testing (67 IDC, 18 ILC) WSIs following [4].
TCGA-Lung dataset is split into 744 training (388 LUAD,
356 LUSC) and 192 testing (96 LUAD, 96 LUSC) WSIs
following DSMIL [9]. For TCGA-CRC, following [2, 10],
we use the first three folds for training, i.e., 241 WSIs (38
hypermutated, 203 not) and the fourth for testing, i.e., 79
slides (12 hypermutated, 67 not) with 40× filtering. The
patch extraction process implemented in our study follows
the methodology outlined in the aforementioned DSMIL
repository [9].

9. Implementation details (additional)

9.1. Deep feature extractors

We compared SI-MIL against different baselines that in-
clude training Additive ABMIL using different types of
patch features. Details of the patch feature extractors are
presented as follows:
IN ViT-S: We train the Additive ABMIL using features ex-
tracted by a popular ImageNet-supervised model, specif-
ically ViT-Small [6] model pre-trained using ImageNet
dataset [5]. The model extracts a feature embedding of size
D = 384 for each WSI patch.
RetCCL: We adopted a state-of-the-art feature extrac-

tor [15] pre-trained using pathology images. This bench-
marks our trained feature extractor, described in Sec. 4
(main paper). This model extracts a feature embedding of
size D = 2048.
CTransPath: Similar to RetCCL, we benchmarked against
a Transformer-based feature extractor pre-trained using
pathology images [14]. The resulting patch embeddings are
of size D = 768.

It is important to note that CTransPath and RetCCL were
pre-trained on the pan-TCGA [1] dataset, and our evaluated
datasets are subset of this dataset. Therefore, these models
were pre-trained using the WSIs in our test dataset, which
can potentially result in inflated performances during clas-
sification. Though benchmarked, these models may not be
suitable for reliable comparisons in our study.
DINO ViT-S: For a reliable comparison, we used DINO [3]
to pre-train ViT-Small models for each dataset (TCGA-
BRCA, TCGA-Lung, and TCGA-CRC), using the dataset-
specific training splits as provided in the Supp Sec. 8 For
pre-training, we used the default hyperparameter values of
DINO [3], while using only two global crops. These pre-
trained models extract a feature embedding of sizeD = 384
for each WSI patch. One RTX 8000 GPU is utilized for pre-
training the ViT-S with a batch size of 256.

9.2. SI-MIL

Hyperparameter tuning is performed with a range of learn-
ing rates ∈ {1e−3, 2e−3, 1e−4, 2e−4} and weight decays ∈
{1e−2, 5e−3}. By default, #PF-Mixer layers =4, λ = 20,
K = 20, γ = 0.75, and t = 3. Additionally, d = 246 ex-
cept for in TCGA-Lung where d = 203 as annotations for
only 4 (instead of 5) cell types are available for HoVer-Net
classification in the Lung dataset. For both the predictors
L(·) and C(·), we use the sigmoid activation (ψ), since our
tasks involve binary classification. Note that LKD is uti-
lized with stop-gradient since the goal is to align the perfor-
mance of the Self-Interpretable branch to be close to high
performing conventional MIL branch in SI-MIL. All MIL
experiments are performed on one RTX 8000 GPU.

9.3. Interpretability analysis setup

For interpretability analysis, we compare the separability of
the top K patches in the PathExpert feature space between
the conventional MIL and SI-MIL (refer to Figure 4 (main
paper)). To ensure a fair comparison, we select WSIs from
the held-out test set where both MIL methods result in cor-
rect predictions.

Note that, we employ 5-fold cross-validation on the
training split and held out the test set. We chose the best-



performing fold for both local (visualization and patholo-
gist relevancy score experiment) and global (visualization)
interpretability analysis for the MIL methods. However,
for multivariate class-separability scores (refer to Figure 4
(main paper)), we report the median and standard deviation
from all 5-folds. Similarly, we report the median and stan-
dard deviation of Jensen-Shannon (JS) divergence across all
5-folds in Figure 4 (main paper).

9.4. SI-MIL complexity analysis

The mitigation of the trade-off between performance and
interpretability by SI-MIL can be attributed to the choice
of PathExpert features and the SI-MIL design choices, in-
stead of merely an increase in the number of model param-
eters. It can be justified by comparing the size and perfor-
mance of SI-MIL with the competing baselines. The num-
ber of model parameters in SI-MIL is 625K, while those
in conventional MIL with DINO/IN ViT-S, CTransPath and
ReTCCL are 345K, 985K, and 5.25M, respectively. Despite
the differences in model sizes, SI-MIL results in compara-
ble performance with respect to the competing baselines, as
shown in Table 1 (main paper).

10. SI-MIL additional results
Here we provide the mean and standard deviations for the
main experiments (refer to Table 1 (main paper)) in Table 4.

11. SI-MIL ablation studies: hyperparameters
In this section, we provide studies of SI-MIL hyperparame-
ters on TCGA-BRCA dataset. Particularly, these ablations
demonstrate the effect of varying K in the PAG Top-K
module, the number of PF-Mixer layers, and the percentile
and temperature for scaling β.

Effect of varying K in the PAG Top-K module: In
Figure 5, we illustrate the impact of varying K on SI-MIL
performance. We observe that a larger value of K leads to
a significant drop in performance compared to the default
K = 20. This decrease may be attributed to an increase
in irrelevant noisy patches, which makes it difficult for the
model to classify WSIs in the PathExpert feature space.
Effect of varying number of PF-Mixer layers: SI-MIL’s
performance is generally robust across various values of the
number of PF-Mixer layers, but experiences a performance
drop for very high values, e.g., #PF-Mixer layers = 6 (Fig-
ure 6). This decline can be attributed to potential overfitting
induced as a result of higher number of layers.
Effect of percentile and temperature for scaling β: In
Figure 7, we show the variation in performance of SI-MIL
with respect to the percentile value (Prγ) and temperature
(t) for scaling the feature attention values β in eq. 5 (main
paper). “None” in Figure 7 refers to the absence of per-
centile and standard deviation scaling.

Figure 5. PAG Top-K module ablation

Figure 6. PF-Mixer module layers ablation

Prγ controls the percentage of features (d) that have a
positive value before being fed to the sigmoid activation in
eq. 5 (main paper). The temperature parameter (t) deter-
mines the sharpness of this curve, with a high value indi-
cating that most values deviate from zero before being fed
to the sigmoid. Thus, having high Prγ and high t leads
to a very sparse selection of features. Since our goal is to
interpret the prediction of WSI, it is beneficial to explain
the prediction in terms of the contribution of “few” most
discriminative features. Note that the absence of Prγ scal-
ing and/or low temperature allows the model to use a large
number of features for its prediction; thus making it harder
to interpret the predictions. Therefore, the main goal is to
have higher values of Prγ and t, while maintaining a good
SI-MIL performance.

In Figure 7, we can observe that having no Prγ scaling
generally results in the best performance, whereas a very
high value, such as Prγ = 0.9, performs poorly in most
cases. We find that having a slightly lower Prγ = 0.75 and
t = 3 establishes an optimal balance, by enforcing adequate
sparsity while still performing efficiently.



Table 4. Results indicate the mean and standard deviation of 5-fold cross-validation on test set. All methods are trained with Additive
ABMIL as base MIL. Int. denotes self-interpretability of a method.

Lung BRCA CRC
Int. Acc. AUC Acc. AUC Acc. AUC

IN ViT-S ✗ 0.859± 0.014 0.919± 0.004 0.929± 0.011 0.967± 0.005 0.891± 0.013 0.898± 0.018
RetCCL ✗ 0.860± 0.008 0.935± 0.003 0.929± 0.011 0.976 ± 0.001 0.889± 0.015 0.891± 0.047

CTransPath ✗ 0.904 ± 0.003 0.967 ± 0.002 0.920± 0.023 0.974± 0.002 0.906 ± 0.010 0.897 ± 0.023
DINO ViT-S ✗ 0.896± 0.003 0.957± 0.003 0.937 ± 0.012 0.974± 0.005 0.904± 0.006 0.897 ± 0.014

PathFeat ✗ 0.830± 0.015 0.888± 0.009 0.885± 0.014 0.950± 0.005 0.886 ± 0.016 0.818± 0.031
PathFeat w/o H(·) ✓ 0.767± 0.018 0.837± 0.016 0.889± 0.012 0.914± 0.003 0.853± 0.013 0.720± 0.044

2-stage training ✓ 0.865± 0.007 0.932± 0.009 0.908± 0.017 0.924± 0.019 0.876± 0.020 0.862± 0.036
SI-MIL (ours) ✓ 0.884 ±0.018 0.941 ±0.009 0.944 ±0.028 0.968 ±0.012 0.884 ±0.017 0.910 ±0.018

Ablation study of SI-MIL components

w/o PAG Top-K ✓ 0.859 ±0.009 0.936 ±0.011 0.915 ±0.023 0.922 ±0.026 0.876 ±0.022 0.869 ±0.024
w/o KD ✓ 0.853 ±0.010 0.915 ±0.007 0.932 ±0.016 0.951 ±0.024 0.878 ±0.024 0.830 ±0.039

w/o PAG Top-K & KD ✓ 0.857 ±0.005 0.924 ±0.005 0.915 ±0.009 0.899 ±0.013 0.879 ±0.022 0.858 ±0.036

Figure 7. β scaling ablation

12. SI-MIL ablation studies: components

In Table 1 (main paper), we demonstrate the variations
in performance when ablating different components of SI-
MIL. Similarly, in Table 5, we present additional experi-
ments on the impact of different SI-MIL components.

We observed that omitting the Feature Attention mod-
ule Af (·) results in better performance compared to us-
ing it without the PF-Mixer network Mix(·), though both
scenarios underperform relative to the proposed SI-MIL.
This indicates that Af (·), which softly selects features, re-
quires contextualization among the patches and features be-
fore highlighting or attenuating specific features within this
module. Without appropriate contextualization, processing
each feature row in matrix MT independently leads to sub-
optimal decisions by Af (·) and reduces performance.

We further investigate the necessity of deep features
in SI-MIL. For this purpose, we substituted deep features
with PathExpert features in the conventional MIL branch,
thereby using the same PathExpert features in both SI-MIL
branches. As shown in Table 5, the performance declines

with or without LKD when replacing deep features, under-
scoring the importance of employing potent deep features
to guide the Self-Interpretable branch in SI-MIL.

Table 5. Results indicate the mean of 5-fold cross-validation on
test set. All methods are trained with Additive ABMIL as the base
MIL. Int. denotes self-interpretability of a method.

Lung BRCA CRC
Int. Acc. AUC Acc. AUC Acc. AUC

PathFeat ✗ 0.830 0.888 0.885 0.950 0.886 0.818
PathFeat w/o H(·) ✓ 0.767 0.837 0.889 0.914 0.853 0.720

2-stage training ✓ 0.865 0.932 0.908 0.924 0.876 0.862
SI-MIL (ours) ✓ 0.884 0.941 0.944 0.968 0.884 0.910

Ablation study of SI-MIL components

w/o Af (·) ✓ 0.853 0.935 0.939 0.981 0.871 0.857
w/o Mix(·) ✓ 0.838 0.915 0.925 0.953 0.866 0.863

w/ PathFeat only ✓ 0.863 0.936 0.911 0.942 0.876 0.836
w/ PathFeat only & w/o KD ✓ 0.847 0.911 0.911 0.945 0.853 0.781

13. Dataset contribution details (additional)
We contribute a unique comprehensive dataset aimed at
enhancing interpretability and reproducibility in MIL re-
search. The dataset encompasses nuclei maps and PathEx-
pert features for over 2,200 WSIs. SI-MIL-generated patch-
feature importance reports will also be made available for
representative slides. It covers multiple organs and can-
cer types, including Lung (lung adenocarcinoma vs. lung
squamous cell carcinoma), Breast (invasive ductal vs. in-
vasive lobular carcinoma), and Colon (low vs. high mu-
tation). This diverse collection facilitates in-depth studies



across various cancer types, providing a valuable resource
for advancements in interpretable MIL methodologies.

Successful translation of AI tools to the clinic hinges
upon the interpretability and trustworthiness of the tools.
This dataset will serve as a critical asset for both the medical
vision and digital pathology communities, facilitating the
exploration of new research directions in the development
of interpretable AI techniques for computational pathology.
A significant obstacle in digital pathology research has been
the intensive resource requirements for extracting features
that possess clear geometric and physical significance, and
which are interpretable by pathologists. The dataset cre-
ation involved analyzing gigapixel WSIs at 40× magnifica-
tion, leveraging HoVer-Net [7] for cell segmentation and
classification, followed by extracting PathExpert features
and feature importance scores detailed in Sec. 3.3 (main
paper) and Sec. 5 (main paper), respectively. Processing
each WSI required ∼2 hours, divided between GPU-based
cell map prediction and CPU-based PathExpert feature ex-
traction. Employing three RTX 8000 GPUs and a 40-core
CPU with 500GB RAM, the total processing amounted to
∼4400 hours (≈60 days). We provide the comprehensive
set to enable further research.

In view of ∼2 TB memory foorprint of HoVer-Net nuclei
maps and the processed PathExpert features, we intend to
host this dataset on TCIA Analysis Results, akin to other
popular preprocessed datasets [8, 13].

The dataset will be released under the Creative Com-
mons Attribution-NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0). It permits the sharing, copying, and
redistribution in any medium or format, as well as adapta-
tion, remixing, transforming, and building upon the mate-
rial for non-commercial purposes. Appropriate credit must
be given, a link to the license must be provided, and any
changes made should be indicated.

14. Local interpretability analysis (additional)
Here, we present additional predictions (refer to Sec. 5
(main paper)) for WSIs from other datasets, i.e., TCGA-
Lung and TCGA-CRC. Please note that the predictions for
all WSIs in the evaluated datasets will be released as part
of the contributed dataset. Qualitative patch-feature impor-
tance reports for TCGA-Lung and TCGA-CRC are illus-
trated in the upper and lower half of Figure 8, respectively.

15. Global interpretability analysis (addition)
Here, we present global interpretability analysis (refer to
Sec. 5 (main paper)) for patches from the test set WSIs. We
include only the WSIs that were correctly predicted by both
the conventional MIL and SI-MIL, to ensures a fair compar-
ison, as described in Sec. 9. Cohort-level interpretation for
TCGA-Lung and TCGA-CRC are illustrated in the upper

and lower half of Figure 9, respectively.

16. Top-K comparative analysis

In this section, we demonstrate how the Self-Interpretable
branch of SI-MIL tames the patch attention map of con-
ventional deep MIL. Specifically, Figures 10 and 11 com-
pare the spatial attention maps generated after the training
of conventional MIL (i.e., without PathExpert features) and
SI-MIL, which integrates both the conventional MIL and
Self-Interpretable branches. We proceed to visualize the
top K = 20 patches from both MIL methods, categoriz-
ing them into groups based on whether they are common or
distinct between the methods.

In Figure 10, we contrast the topK = 20 patch selection
of our Self-Interpretable MIL (SI-MIL) with conventional
MIL in analyzing invasive ductal carcinoma (IDC) WSIs.
SI-MIL and conventional MIL share 6 out of 20 patches,
but differ in the remaining 14. While conventional MIL
often chooses patches near the dermis, featuring IDC with
smooth connective areas and occasionally normal glands,
SI-MIL targets patches indicative of malignancy, marked
by malignant cancerous ducts with large, distorted nuclei.
This difference, especially evident in the unique patches
of SI-MIL, underscores its focus on diagnostically rele-
vant areas like malignant glands with compressed lumens
and hyperchromatic nuclei, contrasted against the tissue
highlighted by conventional MIL. SI-MIL’s emphasis is on
patches comprising 70-80% of malignant features, includ-
ing dense pink-colored cancer-associated stroma, aligning
with its goal of accurate diagnosis.

In the context of invasive lobular carcinoma (ILC), early
detection is crucial due to its rapid spread and poor long-
term survival outcomes, necessitating clear differentiation
from invasive ductal carcinoma (IDC). In Figure 11, we ob-
serve an absence of common patches between the top K =
20 attended patches of both MIL methods. Our method,
in contrast to conventional MIL, distinctively focuses on
invasive single file chains, often found at the periphery
of the tumor bulk or the invasive front, which are more
characteristic of ILC. This is in contrast to the conventional
MIL’s emphasis on patches with high cellularity within the
tumor bulk. The rapid spread of lobular cancer is evident
in its infiltration through various tissues, and unlike IDC,
which often presents as glandular structures with clear sep-
arations between tumorous and connective nuclei, ILC is
characterized by discohesive arrangements, leading to sin-
gle file patterns with a notable mixing of tumor nuclei with
connective nuclei.

https://creativecommons.org/licenses/by-nc/4.0/


Lo
w

 m
ut

. (
Cl

as
s 0

)
H

ig
h 

m
ut

. (
Cl

as
s 1

)

f1

f2

f3

f4

f5

f6
f6 – Standard deviation of cells’ closeness centrality

f5 – Graph modularity with cell types as community

Distribution
(a) WSI w/ heatmap (b) Patch w/ nuclei map (c) Feature-level interpretation (d) Representative features visualization

f4 - Neoplastic cells: mean of cells’ solidity 

f3 – Neoplastic cells: standard deviation of cells’ 
eccentricity 

f2 - Neoplastic cells: mean of cells’ energy 

f1 – Neoplastic cells: standard deviation of cells’ 
energy 

Contribution:

TCGA-Lung

TCGA-CRC

LU
AD

 (C
la

ss
 0

)
LU

SC
 (C

la
ss

 1
)

f1

f2

f3

f4

f5

f6
f6 - Neoplastic cells: standard deviation of cells’ 
dissimilarity 

f5 – Mean of cells’ clustering 
coefficient/triangulation

Distribution
(a) WSI w/ heatmap (b) Patch w/ nuclei map (c) Feature-level interpretation (d) Representative features visualization

f4 - Neoplastic cells: skewness of cells’ eccentricity 

f3 – Skewness of cells’ local Simpson index

f2 - Neoplastic cells: kurtosis of cells’ area 

f1 – Neoplastic cells: skewness of cells’ solidity 

Contribution:

Figure 8. Qualitative Patch-Feature importance report: In (a) and (b), we present WSIs with overlaid attention heatmaps and the top
two patches, along with their nuclei maps. In (c), we demonstrate the mean contribution magnitude of select representative features across
the top K patches employed in the Self-Interpretable branch. Additionally, we display a feature density plot that quantifies the distribution
of features within the K patches. For brevity, we omit the y-axis. Given that these features are normalized, a curve leaning towards the
right indicates higher/positive values, while one towards the left signifies lower/negative values, depending on the feature. Finally, in (d),
we illustrate, the description of representative features in (c).

17. Hand-crafted PathExpert feature extrac-
tion

In Sec. 3.3 (main paper), we briefly discussed the cat-
egories of handcrafted PathExpert features, such as Mor-
phometric and Spatial distribution properties. This sec-
tion provides a detailed description of these features,
accompanied by visualizations to elucidate the signif-
icance of their geometrical and physical meaning in
computational pathology. We further refine these fea-
tures into three categories, based on the studies from

which they were adopted: Morphometric properties (from
FLocK [11]), Graph-based Social Network Analysis [16],
and Spatial heterogeneity properties [12].

17.1. Feature categories

We employ HoVer-Net [7] to segment and classify nuclei
in each WSI patch pi, using the model trained on PanNuke.
The classified nuclei include Neoplastic epithelial, Connec-
tive, Inflammatory, Necrosis, and Non-neoplastic epithelial
classes. Subsequently, image-processing tools are used to
quantify the properties and spatial distribution of nuclei in



Metrics Conventional MIL SI-MIL
Silhouette score 0.03 ± 0.01 0.06 ± 0.03

JSdiv @ 1 0.07 ± 0.03 0.22 ± 0.15
JSdiv @ 2 0.26 ± 0.05 0.74 ± 0.26
JSdiv @ 3 0.54 ± 0.06 0.86 ± 0.17
JSdiv @ 4 0.62 ± 0.08 0.94 ± 0.21

SI-MIL: top 𝑲 patchesConventional MIL: top 𝑲 patches
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Metrics Conventional MIL SI-MIL
Silhouette score 0.09 ± 0.05 0.11 ± 0.05

JSdiv @ 1 0.53 ± 0.37 0.63 ± 3.55
JSdiv @ 2 2.06 ± 1.03 8.02 ± 4.59
JSdiv @ 3 4.29 ± 0.86 8.99 ± 6.88
JSdiv @ 4 5.51 ± 1.47 17.28 ± 7.55
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Figure 9. Cohort-level Interpretation: Separability of top K patches of WSIs across classes in the PathExpert feature space. Multivariate
and Univariate analyses depict that the top K patches selected by SI-MIL and their PathExpert features are more separable.

each patch. Next we provide a detailed description of each
feature within these categories.

17.1.1 Morphometric properties

In a patch pi, we extract 10 morphometric properties for
each segmented nucleus as outlined in Table 6. To rep-
resent the entire patch, these nuclei-level features are ag-
gregated using 4 statistical properties: mean, standard de-
viation, skewness, and kurtosis. This aggregation is per-
formed separately for each of the 5 nuclei classes identified
by HoVer-Net. Additionally, the number of nuclei in each
class is included as a feature.

Consequently, this results in a total of 205 patch-level
aggregated morphometric properties: 10 × 4 × 5 for the
morphometric properties aggregated across the four statis-
tics and five nuclei classes, plus five for the count of nuclei
in each class.

In computational pathology, these 205 morphometric
properties from each patch pi provide a holistic tissue pro-

Group Feature

Shape

Area
Eccentricity
Roundness
Orientation

Morphology

Mean of Intensity
Standard Deviation of Intensity

Contrast of Texture
Dissimilarity of Texture
Homogeneity of Texture

Energy of Texture

Table 6. Description of extracted morphometric properties for
each segmented nuclei

file. These features encapsulate key morphological charac-
teristics of nuclei, crucial for pathological assessment. By
employing statistics like mean, standard deviation, skew-
ness, and kurtosis, we gain insights into the variability,
asymmetry, and tailedness of the nuclei’s morphological



properties within each patch. Separately analyzing these
features for each of the five nuclei classes as identified
by HoVer-Net enriches the model’s understanding of the
tissue heterogeneity and cellular composition. Addition-
ally, counting nuclei per class quantifies cellular composi-
tion, further enriching the diagnostic value in computational
pathology.

17.1.2 Graph-based Social Network Analysis

In a patch pi, we construct a graph based on the centroids
of nuclei and quantify the properties of this network. Draw-
ing inspiration from [16], we initially create a k-nearest
neighbor graph (with k = 6) using the centroid locations of
each segmented nucleus, irrespective of their classes. Sub-
sequently, we extract 4 traditional social network analysis
properties for each nucleus, as detailed in Table 7. This
is followed by statistical aggregation to patch-level using
mean, standard deviation, skew, kurtosis, and max. This
results in total 20 aggregated Social Network features.

Feature
Degree

Degree centrality
Clustering coefficient
Closeness centrality

Table 7. Description of extracted social network analysis proper-
ties for each nuclei

The Degree and Degree Centrality metric in our study
provides insight into the number of direct connections a nu-
cleus has within the tissue network, illuminating its level of
interaction. This is pivotal in understanding nuclei commu-
nication and behavior in various pathological states. The
Clustering Coefficient is another key measure, offering in-
sights into the extent of interconnectivity among a nucleus’s
neighbors. This can reveal localized nuclei clusters, a
feature often observed in certain pathological conditions.
Lastly, Closeness Centrality assesses the average shortest
distance from a nucleus to all others, aiding in identifying
nuclei that are central or isolated within the tissue architec-
ture. This comprehensive analysis of nuclei organization
and interaction patterns through these SNA features is cru-
cial for an in-depth understanding of the tissue’s pathology.

17.1.3 Spatial Heterogeneity properties

This feature group goes beyond analyzing just the centroids
of nuclei; it also incorporates their classes to assess the spa-
tial heterogeneity of various nuclei communities within a
patch [12]. Heterogeneity is quantified at both global and
local levels in each patch.

Global level: A range of entropy-based descriptors and
k-function metrics are utilized, examining all segmented
nuclei to evaluate the uniformity versus randomness in their
spatial distribution. These global heterogeneity descriptors
are listed in Table 8.

Local level: Following the methodology in [12], we con-
struct a k-nearest neighbor graph (with k = 6) using the nu-
clei. For each nucleus, entropy and interaction-based prop-
erties are extracted, focusing on immediate neighbors. A
local interaction-score is then aggregated at the patch level,
as per the process in [12]. Additionally, skewness of en-
tropy property distribution across nuclei is computed. This
skewness metric discerns whether most nuclei have lower,
medium, or higher entropy values, thus offering a detailed
view of cellular interactions and complexity. This local-
level approach highlights the intermixing of different nuclei
communities, taking into account their spatial relationships,
an aspect overlooked by global entropy-based descriptors.
These local-level features are enumerated in Table 9.

This results in total 21 Spatial Heterogeneity features (9
Global and 12 Local). For an in-depth explanation and visu-
alization of these features, we direct readers to the seminal
work by [12], which extensively explores these methodolo-
gies and their implications.

Group Feature

Global Entropy

Global Shannon index
Global Simpson index
Global max entropy

Global Richness (number of cell-types present)
Graph modularity with cell types as community

k-function

Neoplastic cells: k-function at radius 224 pixels
Neoplastic cells: k-function at radius 448 pixels
Neoplastic cells: k-function at radius 672 pixels
Neoplastic cells: k-function at radius 896 pixels

Table 8. Global Spatial Heterogeneity Descriptors

Group Feature

Local Entropy [12]

Skewness of cells’ local Shannon index
Skewness of cells’ local Simpson index
Skewness of cells’ local max-entropy

Skewness of cells’ local richness

Local Interaction score [12]

Mixing of neoplastic cells in inflammatory cells’ region
Mixing of neoplastic cells in connective cells’ region

Mixing of neoplastic cells in necrosis cells’ region
Mixing of neoplastic cells in non-neoplastic epithelial cells’ region

Mixing of inflammatory cells in neoplastic cells’ region
Mixing of connective cells in neoplastic cells’ region

Mixing of necrosis cells in neoplastic cells’ region
Mixing of non-neoplastic epithelial cells in neoplastic cells’ region

Table 9. Local Spatial Heterogeneity Descriptors

For instance, clustered arrangements of different nuclei
communities typically result in lower local-level entropy,
as the neighboring nuclei are mainly from the same class.
Conversely, intermixed arrangements lead to higher local-



level entropy due to the diversity of neighboring nuclei
classes. However, at the global level, these differing ar-
rangements may yield similar entropy values if the overall
count of each nuclei class remains constant, despite their
distinct spatial distributions. This highlights the importance
of analyzing spatial heterogeneity at both local and global
levels to capture the full complexity of cellular arrange-
ments in tissue pathology.

17.2. Normalization

In this study, we implemented a two-step normalization
process for all handcrafted PathExpert features. The first
step addresses potential inaccuracies in nuclei segmentation
and classification by HoVer-Net, using a binning operation.
Each feature within a patch is assessed based on its per-
centile relative to other patches in the training split of a WSI
task. These percentiles are then categorized into 10 discrete
bins, ranging from the 0-10th to the 90-100th percentile,
effectively shifting the scale of features from absolute val-
ues to a relative range from very-low to very-high. This
approach transforms feature values into a robust and inter-
pretable format across different patches. The second step
involves mean and standard deviation normalization, once
again using the training split data. This step centers the data
around zero, optimizing it for effective processing by neural
networks.

We emphasize that the normalization process alters the
scale of the features. For instance, the skewness proper-
ties listed in Table 9 would typically be near 0, negative,
or positive in their absolute scale. However, after mean-
standard deviation and binning normalization, the scale of
skewness may shift, with a 0 skew potentially appearing on
either the positive or negative side. Hence, for a more accu-
rate interpretation of our predictions in the local slide-level
interpretable predictions (refer to Figure 3 (main paper)), it
is crucial to consider this scaling effect. Readers should in-
terpret the features as being generally in the lower or higher
range and then conceptually approximate these back to their
absolute scale. This approach ensures a more nuanced un-
derstanding of the predictions post-normalization.

17.3. Feature Visualization

In the following figures (Figures 12 to 16), we present a
visual exploration of some representative features by show-
casing patches with low and high values of these features.
Each figure is accompanied by a detailed caption that elu-
cidates the feature in the context of the patches, providing
insights into what constitutes low and high values with re-
spect to that specific feature. This visual representation aids
in understanding the impact of these features on the tissue’s
pathology and offers a deeper perspective on how they man-
ifest in different patches.

Note that the terms ‘cell’ and ‘nucleus’ are used inter-

changeably. However, since the imaging modality is H&E,
all the features actually pertain to nuclei.



WSI (TCGA-BRCA: IDC) SI-MILConvention MIL

Common patches in top 𝐾 = 20

Different patches in top 𝐾 = 20
SI-MILConvention MIL

Figure 10. TCGA-BRCA Invasive Ductal Carcinoma (IDC) sample. Refinement of the patch attention map by the Self-Interpretable
branch, transitioning from conventional MIL to SI-MIL.



WSI (TCGA-BRCA: ILC) SI-MILConvention MIL

Common patches in top 𝐾 = 20

Different patches in top 𝐾 = 20
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Figure 11. TCGA-BRCA Invasive Lobular Carcinoma (ILC) sample. Refinement of the patch attention map by the Self-Interpretable
branch, transitioning from conventional MIL to SI-MIL.



Figure 12. Neoplastic Cells: Mean of Eccentricity. As illustrated, in the patches under the column named ‘Low’, there are round cancer
cells (the larger ones), whereas on the right side, under the column named ‘High’, elliptical cells are present, indicating a higher mean of
eccentricity. In histopathology, this feature refers to the average deviation of cancer cells from a perfect circular shape. A higher mean
eccentricity, as observed in the ‘High’ column, suggests more elliptical cells, often associated with more aggressive or advanced cancer
forms.



Figure 13. Neoplastic Cells: Mean of Intensity Standard Deviation. As illustrated, in the patches under the column named ‘Low’, there
are cancer cells (the larger ones) with uniform intensity, thus the standard deviation is low for each cell, leading to a low mean intensity
standard deviation. Whereas on the right side, under the column named ‘High’, the cells exhibit anisochromasia, indicating a higher mean
intensity standard deviation. In histopathology, this feature refers to the average deviation of cancer cells from homogeneous intensity. A
higher value of this feature, as observed in the ‘High’ column, suggests more anisochromasia, often associated with more aggressive or
advanced cancer forms.



Figure 14. Standard Deviation of Cells’ Degree. As illustrated, in the patches under the column named ‘Low’, there is a homogeneous
distribution of cells of all types. For this feature, we first construct a k-nearest neighbor graph from cells’ centroid and then calculate
the cell’s degree for each cell. Therefore, a homogeneous distribution leads to each cell having a similar degree, resulting in a lower
value of standard deviation. Whereas on the right side, under the column named ‘High’, the cells are much more randomly distributed
(disorganized), with grouping in some areas and sparse cells in others. This leads to some cells having a higher degree and others lower,
resulting in a high standard deviation of cells’ degree in a patch. In histopathology, this feature loosely refers to cohesive versus non-
cohesive or homogeneous versus heterogeneous distribution in a spatial context.



Low High

Figure 15. Graph Modularity with Cell Types as Community. As illustrated, in the patches under the column named ‘Low’, cancer cells
(in red) co-occur in close spatial proximity with other cell types such as connective (in green) and inflammatory cells (in blue). This results
in interconnections among different cell classes when constructing a graph for this feature, leading to low graph modularity. Whereas on
the right side, under the column named ‘High’, cells of different classes/communities are more distinctly separated and grouped, resulting
in more connections within the same community in the k-nearest neighbor graph, leading to higher graph modularity. In histopathology,
this feature can serve as a proxy for distinguishing ductal versus single file line patterns in IDC versus ILC classification in TCGA-BRCA.

Low High

Figure 16. Infiltration of Connective Cells in Neoplastic Cells’ Region. In contrast to the scenario presented in Figure 15, the ‘High’
column patches display cancer cells (colored in red) closely intermingled with connective cells (colored in green). This proximity results
in more interactions between these cell types in the graph-based analysis of this feature, leading to a marked increase in the infiltration
of connective cells within the neoplastic area. On the other hand, in the ‘Low’ column, there is a clearer segregation and clustering of
the two cell classes, manifesting in reduced connectivity between them in the k-nearest neighbor graph, and consequently, lower levels
of infiltration. In histopathological analysis, this characteristic can be instrumental in differentiating ductal cancers, which show minimal
infiltration by other cell types, from invasive patterns characterized by a significant presence of connective cells within the neoplastic areas.
This explanation is also applicable to features like the Infiltration of Inflammatory Cells in Neoplastic Cells’ Region.
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