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1. Benchmark Details

This section provides detailed information on the two
benchmarks used in our work. OOD Benchmark is used

to evaluate the model robustness against natural distribu-
tion shifts using the traditional ImageNet and its out-of-
distribution (OOD) versions containing images with vary-
ing styles and corruptions. Herein below, we provide a con-
cise overview of each of the OOD datasets.
• ImageNet-V2 [11] consists of 10,000 images and 1,000

ImageNet classes, and was collected by applying an up-
dated natural data collection pipeline to the original Ima-
geNet data.

• ImageNet-A [6] is a subset of 7,500 visually similar but
naturally perturbed ImageNet images of 200 classes.

• ImageNet-R [5] includes 30,000 images belonging to
200 categories of the ImageNet dataset, but with diverse
artistic styles.

• ImageNet-S [13] consists of 50,000 sketches of 1000
class objects from the ImageNet dataset, and represents
a domain shift from natural images to sketches.

Cross-Domain Benchmark consists of 10 image classifi-
cation datasets to evaluate the effectiveness of the method
on different domains. This benchmark incorporates the fol-
lowing datasets: Caltech101 [3] for general image classi-
fication, OxfordPets (Pets) [10], StanfordCars (Cars) [7],
Flowers102 [9], Food101 [1], and FGVCAircraft (Aircraft)
[8] for fine-grained image classification, EuroSAT [4] for
satellite image classification, UCF101 [12] for action clas-
sification, DTD [2] for texture classification, and SUN397
[14] for scene classification.
The detailed statistics of all the datasets are shown in Ta-
ble 1.

2. Parameter Studies on Thresholds

This section provides more parameter studies on three
thresholds defined in our work. Our experiments are con-
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Dataset Classes Test Size

ImageNet 1,000 50,000
ImageNet-V2 1,000 10,000
ImageNet-S 1,000 50,000
ImageNet-A 200 7,500
ImageNet-R 200 30,000

Aircraft 100 3,333
Caltech101 100 2,465
Cars 196 8,041
DTD 47 1,692
EuroSAT 10 8,100
Flowers102 102 2,463
Food101 101 30,300
Pets 37 3,669
SUN397 397 19,850
UCF101 101 3,783

Table 1. Datasets statistics.

ducted on the ImageNet validation set using the default set-
tings.

The threshold for negative pseudo-labeling. In Eq 4 of
our manuscript, the threshold pl is used to select negative
pseudo labels by applying the negative mask. We conduct
parameter studies on pl and the results are illustrated in Fig-
ure 1. The best performance is achieved when pl is set to
0.03 and subsequent increases in pl do not yield notable im-
provement or degradation in the results, indicating the sta-
bility of this parameter. It can be noticed that the perfor-
mance deteriorates when pl is less than 0.03 because the
confident classes with low probabilities should not be in-
cluded in negative pseudo labels.

The threshold range for testing feature selection in the
negative cache. In Eq 5 of our manuscript, the thresh-
olds [τl, τh] are used to check whether the testing feature
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Figure 1. Parameter studies on the Negative Mask Threshold pl
for the negative pseudo-labeling in Negative Cache. The results
are reported on ImageNet top-1 accuracy using only the Negative
Cache to produce an adapted prediction. The experiments are con-
ducted with CLIP-ResNet50.

will be considered to be included in Negative Cache if the
entropy of the prediction is in the specified interval. Ta-
ble 2 presents the results of an ablation study focusing on
the impact of adjusting the threshold range for testing fea-
ture selection in the Negative Cache. This investigation
delves into the testing feature selection of uncertain sam-
ples using two distinct approaches: one involving values
closer to the minimum range threshold (τl) and the other
to the maximum range threshold (τh), achieved by revers-
ing the second condition: H(ftestW

T
c ) < H(q̃entWcT )

or H(ftestW
T
c ) > H(q̃entWT

c ). By collecting the low-
est entropy features within the range [0.2, 0.5], the high-
est result is attained 60.83%. Opting values below 0.2 in-
dicates the selection of confident samples for the Negative
Cache, resulting in a reduction in the confidence of CLIP’s
prediction. Furthermore, a shift by 0.1 from [0.2, 0.5] to
[0.3, 0.6] in the thresholds leads to an inclusion of more
noisy samples during the early collection phase of the neg-
ative cache, resulting in a 0.48% decrease in performance.
Selecting maximum entropy features with the same thresh-
old range displays a slight decline in performance compared
to the minimum entropy feature selection within the speci-
fied range. Hence, the most valuable uncertain samples fall
within the [0.2, 0.5] range, whose entropy is closer to 0.2.
The reported results exclusively utilize the Negative Cache
to generate an adapted prediction.

The residual and sharpness ratios. The experiments in
Table 3 show that the optimal residual ratio is 2.0 for TDA
(instead of 1.0 in Tip-Adapter), indicating a higher signifi-

Minimum entropy features Maximum entropy features

τl τh Accuracy τl τh Accuracy

0.0 1.0 60.69 0.2 0.4 60.51
0.0 0.2 60.67 0.2 0.5 60.53
0.0 0.3 60.69 0.2 0.6 60.51
0.1 0.3 60.76 0.3 0.5 60.30
0.1 0.4 60.77 0.3 0.7 60.30
0.2 0.4 60.81 0.4 0.6 60.16
0.2 0.5 60.83 0.4 0.7 60.16
0.2 0.6 60.81 0.5 0.7 60.34
0.3 0.5 60.34 0.5 0.8 60.34
0.3 0.6 60.35 0.6 0.8 60.35

Table 2. Ablation study of the impact of varying Threshold Range
[τl, τh] for testing feature selection in the Negative Cache. The
study investigates the testing feature selection of the uncertain
samples in two ways: choosing the minimum and maximum en-
tropy features in the given range. The results are reported on Im-
ageNet top-1 accuracy using only the Negative Cache to produce
an adapted prediction. The experiments are conducted with CLIP-
ResNet50.

cance of adapted features compared with CLIP features in
test-time adaptation. The optimal sharpness ratio for TDA
is 5.0, which is close to the 5.5 in Tip-Adapter.

Residual Ratio 0.5 1.0 2.0 3.0 4.0 5.0

TDA 61.07 61.20 61.35 61.29 60.90 60.63

Sharpness Ratio 0.5 1.0 3.0 5.0 7.0 9.0

TDA 60.98 61.20 61.29 61.35 61.20 61.19

Table 3. Analysis on the residual and sharpness ratios of TDA.

3. More Experimental Analysis
Caches built for inference. The caches are built on the
fly during inference, starting empty and progressively accu-
mulating samples. At the start of the testing phase on Im-
ageNet, where only 1% of the data was used, we observed
a slight accuracy drop of 0.06%. We also noted that by-
passing cache usage at the early testing phase leads to a
marginal accuracy improvement of 0.1%. We didn’t adopt
this approach as it increases complexity by introducing an
extra hyperparameter for determining when to use caches.

Class imbalance under high shot capacity. Our analysis
with a 6-shot positive cache reveals minimal class imbal-
ance (only 4 out of 1000 ImageNet classes have less than
6 samples) but identifies a significant cache accuracy drop



from 90.3% to 86.6% when shot capacity increases from 3
to 6. Such accuracy drop happens because larger cache ca-
pacities tend to accumulate noise, thereby reducing the reli-
ability of cached labels and negatively affecting the adapted
predictions. Hence, the performance decline with larger
caches is mainly due to noise accumulation rather than class
imbalance.

4. Broader Impact

The broader impact of test-time adaptation of vision-
language models lies in its potential to enhance real-world
applicability, improve accessibility and inclusivity, address
bias and fairness concerns, and advance research and de-
velopment. By allowing models to adapt to new, unseen
data during inference, these models can be more versatile
and adaptable, benefiting various domains such as health-
care and assistive technologies. Test-time adaptation also
offers opportunities to mitigate biases, personalize user ex-
periences, and push the boundaries of what vision-language
models can achieve. However, ethical considerations must
be taken into account to ensure responsible development
and deployment, ensuring transparency, fairness, and ac-
countability in the adaptation process.
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