
Optimizing Diffusion Noise Can Serve As Universal Motion Priors
**Appendix**

A. Motion completion

Table A.1 shows the results of the motion completion task.
The task is evaluated under the same setting as the motion
refinement task in the main paper, except that the ground
truth joint locations are given without added noise. The goal
of the task is to generate the full-body motion given partial
joint observations.

The results are consistent with the motion denoising ex-
periment where DNO’s performance scale with base model,
DNO-GMD outperforms other baselines regarding MPJPE
and FID, while HuMoR tends to produce smoother motions.

Table A.1. Motion completion results on a subset of HumanML3D
[3] dataset. All experiments were run with N = 300 except DNO-
MLD* which runs with 1,000 optimization steps. FIDs are com-
puted against Real. The Real’s FIDs are computed against a hold-
out set from the dataset. HuMoR* means we exclude the sequence
when its optimization fails.

MPJPE ↓
observed (cm)

FID ↓ Foot ↓
skating ratio

Jitter ↓

Real 0.0 0.50 0.08 0.50

Six joints

HuMoR* 8.7 1.53 0.13 0.17
GMD 31.1 7.08 0.08 0.79
DNO-MDM 8.5 1.31 0.07 0.33
DNO-MLD* 11.0 0.67 0.10 1.29
DNO-GMD 6.6 0.30 0.07 0.92

Eight joints

HuMoR* 8.4 1.22 0.13 0.17
GMD 29.8 7.06 0.08 0.79
DNO-MDM 8.7 0.98 0.07 0.34
DNO-MLD* 11.3 0.51 0.11 1.30
DNO-GMD 6.6 0.12 0.08 0.93

Ten joints

HuMoR* 8.3 1.06 0.12 0.18
GMD 28.4 6.88 0.08 0.79
DNO-MDM 8.6 0.80 0.07 0.36
DNO-MLD* 11.3 0.49 0.11 1.31
DNO-GMD 6.5 0.11 0.07 0.93

B. Additional motion-related tasks

Under the DNO framework, the same method presented in
Algorithm 1 can be adapted to many motion-related tasks
without retraining the model. In this section, we present
different settings of DNO for motion blending and motion
in-betweening tasks. The qualitative results are presented in
our supplementary video.

B.1. Motion Blending.

For motion blending, the goal is to smoothly transition from
one distinct action to another. The inputs are two motion
sequences and the expected output is a long motion that
combines the two input motions together. With DNO, the
problem can be formulated in the same manner as the mo-
tion refinement and completion task (Sec. 5.2), where the
joint locations of the concatenated input motions are used
as targets and the optimization is initialized from a random
xT ∼ N (0, I). To facilitate a smooth blending between
motions, we define a 10-frame window around the concate-
nated frame as a transition period where we drop all target
joints. Consequentially, the model needs to fill in this tran-
sition according to its motion prior. We set the content cri-
terion λcont = 0.0, λdecorr = 103, the perturbation amount
γ = 0, and the optimization step to 1000 for this task.

B.2. Motion In-betweening.

For motion in-betweening, the inputs are the starting pose
and the ending pose, given by the location of each joint.
The goal is to generate the in-between motion according to
those two poses. Similar to motion blending and motion
completion, this task can be formulated as an optimization
with partial observation as targets. We use the same setting
as in the motion blending task with the only difference being
the number of target joints.

C. Why we do not report FID for motion edit-
ing.

As the motion Fréchet inception distance (FID) is a mea-
surement between two data distributions, it requires a large
number of samples in both datasets [2]. For the motion edit-
ing task, only one motion sequence exists before editing and
only a few sequences exist after editing, thus there are not
enough data points to measure a meaningful FID.

D. GMD implementation details
To compare with GMD [5], we use the released model with
Emphasis projection and Dense gradient propagation for all
tasks. The trajectory model is not used. When conditioned
on the ground locations, we use the provided point-to-point
imputing method until t = 20 as suggested in their exper-
iments. The guidance is provided using the same criterion
terms used in our method for all tasks. As GMD does not
support editing while preserving the content, in the editing
task, we instead provided the text prompt together with the
target condition as inputs for the motion editing task. The
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observed joints are used without text conditioning for noisy
motion refinement and motion completion.

E. HuMoR implementation details

We use the officially released version of HuMoR [8] which
uses both the pose prior and motion prior for evaluations.
We note that the released model is trained on a subset of the
AMASS dataset [6] at 30 FPS which does not entirely over-
lap with the 20 FPS sequences in the HumanML3D dataset
[3]. The HuMoR code accepts the FPS number and does
its interpolation to match the input with its learned motion
prior. We also noticed that HuMoR optimization fails on
some sequences in the test set, resulting in NaN error. We
removed those sequences when computing the metrics for
HuMoR.

F. SDEdit on motion refinement

We include SDEdit [7] results on the motion refinement task
in Tab. F.1. We tried all possible hyperparameters t in 100
increments from 100-1000. Except for the very extreme
values of t = 1000, SDEdit exhibits unrealistic motions
affected by the presence of noise in the original motion rep-
resentation with high FID and Jitter. At t = 1000, SDEdit
becomes a normal DDPM generative process, and no orig-
inal content is preserved. In all cases, SDEdit fails to pre-
serve the original content suggested by very high MPJPE.
Note that the high FID of 29.73 for t = 1000 comes from
the fact that the motions generated from MDM without any
text prompts are heavily biased toward simple motions, e.g.
standing, which do not capture the wide range of possi-
ble motions in the HumanML3D dataset. We conclude that
SDEdit is not an effective motion refinement method.

Table F.1. SDEdit [7] results on the motion refinement task (noise
std. = 5 cm.). We used the default number of repetitions k = 3 in
all of the following experiments.

MPJPE ↓
observed (cm)

FID ↓ Foot ↓
skating ratio

Jitter ↓

All joints

Real 0.0 0.48 0.08 0.50
Noisy 11.4 58.82 0.66 28.61
SDEdit (t=100) 346.3 36.10 0.12 3.12
SDEdit (t=200) 313.6 33.92 0.14 1.61
SDEdit (t=300) 288.7 32.47 0.14 1.11
SDEdit (t=400) 259.4 31.24 0.13 1.01
SDEdit (t=500) 226.3 30.53 0.12 0.86
SDEdit (t=600) 187.2 28.99 0.10 0.93
SDEdit (t=700) 150.2 27.76 0.09 1.48
SDEdit (t=800) 122.7 30.83 0.08 2.35
SDEdit (t=900) 79.2 19.09 0.06 1.33
SDEdit (t=1000) 68.2 29.73 0.00 0.04

.

F.1. Qualitative Results

Please check our supplementary video for qualitative re-
sults from DNO in all tasks including motion editing, re-
finement, blending, and in-betweening.

G. Differences from guided diffusion method
While both DNO and loss-guided or classifier-guidance dif-
fusion methods [1, 5, 9, 11] can be used to produce motion
samples with specific guidance objectives, these processes
are completely different.

The loss-guided or classifier-guidance diffusion method
(LGD) is a sampling technique that uses the gradient of a
loss function to steer the trajectory of the diffusion sam-
pling. The process is done in one full-chain sampling and
outputs a sample that follows the guidance.

In contrast, DNO is a latent optimization technique
where each optimization step involves a full-chain diffusion
sampling. The output is a latent code whose decoded sam-
ple follows the guidance.

The differences between DNO and LGD also have the
following practical implications:

1) Latent optimization (DNO) does not have approx-
imation error during guidance because it operates on
the exact output x0 from solving the full-chain diffusion
process via an ODE solver, while in LGD, the loss crite-
rion L(·) is approximately computed on an expected x̂ =
E[x0|xt] as explained in Eq. 7, 8 of [9] and [11] as follows:

L(xt) = Ep(x0|xt)L(x0)

≈ L(x̂)

The approximation error is severe when Var[x0|xt] is large,
particularly near the beginning where T ∼ 1000. This
means the guidance is only effective near the end of the
denoising process. Empirically, we observe that GMD [5]
does not reach the targets as well compared to DNO (25.7
vs 9.1 MPJPE, Table 2).

2) The latent space can serve as universal priors for
valid motions. DNO can answer the question “What is the
closest valid motion to the input x?” by optimizing latent
xT to produce a valid motion x0 that best matches the input
x. GMD, an LGD method, is ineffective at generating valid
motions from noisy inputs as shown in the refinement task
in Table 2.

3) LGD cannot easily preserve content (Tab. 1). As
editing in LGD is equivalent to new conditional sampling
with the input motion, it is not obvious how to specify what
aspects of the input motion are to be preserved and how to
preserve them with LGD.

Most recent developments in diffusion image editing op-
erate on the latent noise space with the help of the condi-
tional inversion process [4, 10]. This direction further bol-
sters the merits of DNO as a latent approach for content
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preservation. The latent space naturally provides smooth
transitions between valid motions; samples that are close in
latent space xT are also likely to be close in motion space
x0. DNO enables content-preserving editing through min-
imal updates on the latent space and results in a minimal
change in the input motion to fulfill the objectives.

As shown in the experiments, DNO enables a wide range
of tasks that require precise control, motion prior, or content
preservation, which cannot be effectively solved with LGD.
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