
THRONE: An Object-based Hallucination Benchmark for
the Free-form Generations of Large Vision-Language Models

(Supplementary Material)

Prannay Kaul1* Zhizhong Li2† Hao Yang 2 Yonatan Dukler 2

Ashwin Swaminathan 2 C. J. Taylor 2 Stefano Soatto 2

VGG, University of Oxford1 AWS AI Labs2

prannay@robots.ox.ac.uk {lzhizhon,haoyng,dukler,swashwin,taylorcj,soattos}@amazon.com

Contents

1 Voting Mechanism Ablation 2

2 THRONE vs. POPE Sampling 3

3 CHAIR Overview 4

4 Qualitative Evaluation of THRONE 5
4.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Improved Baseline Implementation Details 6
5.1 Object Enumeration Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Negative Sampling Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.3 Object Enumeration Data Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.4 Inference Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.5 Ablation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 Limitations 8

7 Ethical Considerations 8

*Work conducted during an internship at Amazon
†Corresponding author

1

mailto:prannay@robots.ox.ac.uk
mailto:lzhizhon@amazon.com
mailto:haoyng@amazon.com
mailto:dukler@amazon.com
mailto:swashwin@amazon.com
mailto:taylorcj@amazon.com
mailto:soattos@amazon.com


1 Voting Mechanism Ablation

Model k PALL RALL F 1
ALL F 0.5

ALL PCLS RCLS F 1
CLS F 0.5

CLS Ignore %

Adapter-v2
9 63.6 73.3 68.1 65.3 68.2 70.6 69.4 68.7 2.4
5 61.8 75.0 67.7 64.0 65.7 72.0 68.7 66.9 0.0
8 63.4 73.8 68.2 65.2 68.0 70.8 69.4 68.5 1.4

Adapter-v2.1
9 63.8 73.7 68.4 65.5 67.4 71.2 69.3 68.1 2.4
5 61.7 75.3 67.8 64.0 64.7 72.5 68.4 66.1 0.0
8 63.6 74.1 68.5 65.5 67.2 71.5 69.3 68.0 1.5

InstructBLIP
9 70.8 74.3 72.5 71.5 77.2 71.9 74.5 76.1 2.5
5 68.2 77.2 72.4 69.8 73.2 74.3 73.7 73.4 0.0
8 70.6 75.1 72.8 71.4 76.8 72.3 74.5 75.9 1.5

Otter-Image
9 33.0 31.2 32.1 32.7 25.2 16.9 20.2 22.9 8.5
5 25.6 34.7 29.5 27.1 16.4 20.1 18.0 17.0 0.0
8 32.4 31.8 32.1 32.3 23.9 17.2 20.0 22.2 4.8

MiniGPT-4
9 81.7 59.8 69.0 76.1 79.9 61.8 69.7 75.5 2.9
5 74.8 64.9 69.5 72.6 73.0 65.4 69.0 71.3 0.0
8 80.8 61.1 69.6 75.9 79.1 62.4 69.8 75.1 1.8

MiniGPT-v2
9 79.0 66.6 72.3 76.2 77.6 67.0 71.9 75.2 2.8
5 73.6 71.4 72.5 73.1 72.1 70.5 71.3 71.7 0.0
8 78.4 67.8 72.7 76.0 76.9 67.7 72.0 74.8 1.8

LLaVA-Mistral
9 86.8 71.8 78.3 83.6 84.4 64.2 70.8 77.5 2.7
5 82.8 75.9 78.3 81.2 78.5 68.3 71.2 77.4 0.0
8 86.3 73.1 78.5 83.3 83.7 65.0 71.2 77.4 1.6

mPLUG-Owl
9 55.5 71.9 62.6 58.1 66.3 68.3 67.3 66.7 2.4
5 54.3 73.9 62.6 57.3 63.7 69.9 66.6 64.8 0.0
8 55.5 72.6 62.9 58.2 66.2 68.6 67.4 66.7 1.4

LRV-Instruction-v2
9 82.0 56.7 67.0 75.3 78.4 58.8 67.2 73.5 3.6
5 77.5 60.8 68.1 73.5 74.6 61.9 67.7 71.7 0.0
8 81.7 57.9 67.8 75.5 78.0 59.4 67.4 73.4 2.0

LLaVA-v1.3
9 80.5 65.2 72.1 76.9 79.9 65.3 71.9 76.5 2.4
5 76.4 68.7 72.4 74.7 75.6 68.0 71.6 73.9 0.0
8 80.0 66.3 72.5 76.9 79.4 65.8 72.0 76.3 1.4

Table 1. Comparison of Voting Mechanisms in THRONE. We compare three different voting mechanisms: unanimous, k = 9; simple
majority, k = 5; and jury majority, k = 8. Moreover in each case we report the number of ignore labels as a result of each voting
mechanism. The number of labels is 400, 000 for a given LVLM. We find that the number of ignore labels is low is almost all cases and
metrics are strongly correlated (> 0.99). In THRONE, we use a unanimous voting mechanism (k = 9) to minimize the likelihood of
hallucination judgement errors.



2 THRONE vs. POPE Sampling

Model Sampling PALL RALL F 1
ALL F 0.5

ALL PCLS RCLS F 1
CLS F 0.5

CLS

THRONE 63.6 73.3 68.1 65.3 68.2 70.6 68.3 68.0
POPE 77.3 73.2 75.2 76.5 84.6 70.0 76.9 81.2Adapter-v2
∆ (-13.7) 0.2 (-7.1) (-11.1) (-16.3) 0.5 (-8.6) (-13.2)

THRONE 63.8 73.7 68.4 65.5 67.4 71.2 68.1 67.5
POPE 79.2 73.2 76.1 77.9 85.4 71.8 76.3 80.6Adapter-v2.1
∆ (-15.4) 0.5 (-7.7) (-12.4) (-18.0) (-0.6) (-8.2) (-13.2)

THRONE 70.8 74.3 72.5 71.5 77.2 71.9 73.1 75.2
POPE 82.2 74.4 78.1 80.5 85.0 70.0 77.9 82.6InstructBLIP
∆ (-11.4) 0.0 (-5.5) (-9.0) (-7.8) 1.9 (-4.8) (-7.4)

THRONE 33.0 31.2 32.1 32.7 25.2 16.9 18.7 21.5
POPE 66.5 34.9 45.7 56.3 70.7 17.3 35.6 49.2Otter-Image
∆ (-33.5) (-3.7) (-13.7) (-23.6) (-45.5) (-0.4) (-17.0) (-27.7)

THRONE 81.7 59.8 69.0 76.1 79.9 61.8 67.6 73.6
POPE 89.1 58.7 70.8 80.7 88.2 60.0 70.5 78.9MiniGPT-4
∆ (-7.5) 1.1 (-1.7) (-4.7) (-8.2) 1.8 (-2.9) (-5.4)

THRONE 79.0 66.6 72.3 76.2 77.6 67.0 70.4 74.0
POPE 88.3 65.8 75.4 82.7 89.8 68.5 76.3 82.6MiniGPT-v2
∆ (-9.3) 0.8 (-3.1) (-6.5) (-12.2) (-1.5) (-5.9) (-8.6)

THRONE 74.7 77.2 75.9 75.2 78.0 76.1 76.3 77.1
POPE 83.8 76.6 80.0 82.2 87.8 74.6 80.0 84.4LLaVA-Mistral
∆ (-9.1) 0.7 (-4.1) (-7.1) (-9.8) 1.5 (-3.7) (-7.3)

THRONE 55.5 71.9 62.6 58.1 66.3 68.3 65.2 65.3
POPE 72.9 71.2 72.0 72.6 82.0 64.5 74.1 78.6mPLUG-Owl
∆ (-17.4) 0.7 (-9.4) (-14.4) (-15.6) 3.7 (-8.9) (-13.3)

THRONE 82.0 56.7 67.0 75.3 78.4 58.8 65.0 71.5
POPE 88.6 54.8 67.7 78.9 85.0 56.2 68.8 77.4LRV-Instruction-v2
∆ (-6.6) 1.9 (-0.7) (-3.6) (-6.6) 2.6 (-3.7) (-5.9)

THRONE 80.5 65.2 72.1 76.9 79.9 65.3 70.4 75.2
POPE 85.5 61.6 71.6 79.3 87.9 61.7 72.6 80.8LLaVA-v1.3
∆ (-4.9) 3.6 0.5 (-2.4) (-8.0) 3.6 (-2.2) (-5.5)

THRONE 68.1 61.0 64.4 66.6 69.9 56.4 62.2 66.8
POPE 81.5 64.4 72.0 77.4 86.2 59.2 70.4 78.8LLaVA-v1.5
∆ (-13.4) (-3.4) (-7.6) (-10.9) (-16.2) (-2.7) (-8.2) (-12.0)

Table 2. Balanced Sampling (POPE) vs. Exhaustive Sampling (THRONE): Applying POPE sampling to THRONE leads to an
underestimation of the prevalence of Type I hallucinations regardless of LVLM.

In the main paper, we demonstrated how the sampling method used in POPE [1] leads to an underestimation of Type II
hallucinations and outline a complete version of POPE (POPE-C), which shows the true extent of Type II hallucinations in
LVLMs. In this section, we perform the opposite—we apply POPE type sampling to THRONE and compare the results
to the complete sampling method used in THRONE as outlined in the main paper. Tab. 2 shows the results of applying
POPE style sampling to THRONE, once again, applying POPE style sampling leads to a large underestimation of Type I
hallucinations. POPE style sampling applied to THRONE leads to a mean underestimation of F 0.5

CLS by 10.9 points compared
to complete sampling, which is the default in THRONE.



3 CHAIR Overview
We present a detailed description of the CHAIR evaluation presented in [2] below. The method of CHAIR, like THRONE,
attempts to capture the extent of hallucinations in free-form generated text pertaining an image, however, focuses on more
traditional image captioners. Similarly to THRONE, CHAIR does not use concept-focused prompts (i.e. instead is focused
on “Type-I”) and is intended to be used only in captioning tasks. CHAIR defines a manual pipeline on-top of the annotated
MSCOCO image dataset to produce a list of ground truth objects present in the scene.

Given a set of ground truth objects in an image and a model-generated image caption, CHAIR extracts the objects present
in the scene via a traditional hard-rule extraction method and then attempts to map each of the predicted objects into one of the
80 class categories of MSCOCO. The mapping of the extracted objects from the caption into the class set of MSCOCO uses a
pre-defined synonym dictionary for each object category. Once the objects of the predicted caption are extracted and mapped
to one of the MSCOCO categories, CHAIR evaluates for “false-positive” predictions (i.e. hallucinations). In particular the
authors introduce two variants of CHAIR, the first variant CHAIRi quantifies the extent of hallucinated instances as,

CHAIRi =
|{hall. object}|
|{pred. object}|

.

In this setting, hallucinations would be objects extracted from the model-generated captions that after being mapped, are still
not present in the ground-truth object list for the corresponding instance. We note that CHAIRi can be viewed as measuring
the “false discovery rate” (FDR) that is 1 − P where P is the precision. Using Precision as the main metric, however
is limiting as it does not take into account the “False Negative Rate” (FNR) which is 1 − R where R is the recall. This
implies that by lacking recall measurements, CHAIRi may assign high scores to short and incomplete captions which are
not comprehensive in detailing the image. This is in stark contrast with the new generation of LVLM models powered by
LLMs which are designed to be more exhaustive and detailed and makes the use of CHAIRi problematic when evaluating
with LVLMs. We note that CHAIRi is the main metric used when people report “CHAIR scores”, and typically reported
numbers correspond to the mean CHAIRi score across the MSCOCO validation set of images.

The second variation of CHAIR is the CHAIRs which simply measure the number of sentences (predictions) that include
at least 1 hallucination as compared with all sentences considered,

CHAIRs =
|{sentences w/ hall. object}|

|{all sentences}|
. (1)

Note that CHAIRs does not measure the extent of hallucination within a sentence, just the existence of at least one halluci-
nation. This is problematic as it does not capture the extent of hallucination in the sentence especially for long-form text and
does not elucidate if a caption contains many or a single hallucination.

Producing ground truth in CHAIR To create a list of ground truth objects from MSCOCO annotations, the authors of
CHAIR harness two annotation types to produce the most exhaustive list of ground truth objects. First the authors directly use
all of the instance segmentation labels for each image, which they aggregate into a unique list of objects existing in the image.
Next the authors use the 5 human-labelled captions of each image in MSCOCO and use the same extraction and mapping
pipeline applied to the predictions to produce an additional set of objects that are present in the captions. Both objects lists
are combined and the authors note that captioning ground truth and instance segmentation ground truth objects are often
complementary as they follow different styles. Therefore combining objects from both types of object lists is beneficial for
the most exhaustive final ground truth list.



Method CHAIR == THRONE? #Responses (%) #Responses Evaluated #Judgements #Judgement Errors Error Rate

CHAIR/THRONE ✓ 38350 (69.7%) 55 157 4 2.5%
THRONE ✗ 16650 (30.3%) 110 376 30 8.0%
CHAIR ✗ 16650 (30.3%) 110 477 111 23.3%

Table 3. Summary of Qualitative Evaluation: Our qualitative results show that for responses in which THRONE and CHAIR differ,
there is a large difference in the error rate. When THRONE and CHAIR agree, the error rate is small.

#Responses Analyzed #False Positives Identified #Hallucinations #Misclassifications

90 71 69 2

Table 4. Hallucinations Dominate False Positives: Human evaluation establishes the vast majority ( 69
71

≈ 97%) of false positive object
classes in LVLM responses are true hallucinations rather than plausible misclassifications of objects.

4 Qualitative Evaluation of THRONE
4.1 Evaluation Method
We include a self-contained file (THRONE qual eval results.html) in the Supplementary Material, which shows the qual-
itative evaluation and comparison of THRONE and CHAIR. For each LVLM evaluated, we sample 10 COCO images at
random in which THRONE and CHAIR disagree and 5 COCO images in which THRONE and CHAIR agree. Therefore,
we qualitatively evaluate 165 responses. These results are summarized in Tab. 3

By calculating error rates for each of these cases and noting the proportion of responses in which THRONE and CHAIR
disagree we can estimate the overall error rate of each method using a weighted sum.

Method Error Rate = (Agreement Proportion)× (Error Rate in Agreement Case)
+ (Disagreement Proportion)× (Error Rate in Disagreement Case)

CHAIR Error Rate = 0.697× 0.025 + 0.303× 0.233 = 0.088 = 8.8%

THRONE Error Rate = 0.697× 0.025 + 0.303× 0.080 = 0.043 = 4.3%

4.2 Discussion
We find that the plurality of errors made in THRONE relate to a mismatch between the LM definition of a certain class and
the definiton in COCO. The most clear example is in the tv COCO class. In COCO, this class includes computer monitors,
whereas for an LM, the implication of the existence computer monitors in an LVLM response does not lead to a “yes”
response when asked Is there a tv in this image? or similar. When doing an manual evaluation our human oracle is
aware of the particular COCO class definitions and answers accordingly. Using a handcrafted rule for tv and other similar
COCO classes, we would expect the error rate of THRONE to reduce significantly, but in THRONE we deliberately avoid
the use of handcrafted rules.

As mentioned in the main paper, the errors in CHAIR are more fundamental and result due to simple text matching of
synonyms not being able to discriminate between abstract concepts alluded to in a response and direct objects implied to exist
in the image based on the response.

Tab. 4 shows results for human analysis of false positives. We analyze 90 responses, the 15 samples for mPLUG-Owl,
MiniGPT-v2, MiniGPT-4, LLaVA-7b-v1.5, LLaVA-7b-v1.3 and InstructBLIP—the final 90 responses in the self-contained
file: THRONE qual eval results.html in the Supplementary Material.



5 Improved Baseline Implementation Details
In the main paper, we introduced a simple method to augment the LLaVA visual instruction tuning data with an object
enumeration task to reduce Type I and Type II hallucinations when used to train LLaVA models. The format used for object
enumeration is:

Instruction: <image> Give a list of objects and locations
in the image.

Response: {class_name_1} [{location_1}/absent]
...
{class_name_N} [{location_N}/absent]

where location i represents the location of the bounding box center point on a 3× 3 grid.
We give additional details on the construction of the object enumeration task here.

5.1 Object Enumeration Implementation Details
The LLaVA visual instruction tuning data contains 157712 samples applied to 81479 images from the COCO training set
(some images correspond to multiple samples). We ensure the absolute character length of our object enumerate task for a
single sample is not exceedingly long—we do not want the visual instruction tuning data to be pushed outside the context
length of the LLaVA model. This is done by limiting the number of instances per class in a sample to 3.

For each sample we construct an object enumeration task using bounding box data as follows: first, sort bounding box
annotations for a given image by box area in descending order; second, loop over the sorted annotations adding the instance
(class name i, location i) to the object enumeration task if there are less than 3 instances of class name in the task; third,
sample 6 negative classes and append them to the object enumeration task using absent as the location string.

The sampling of negative classes is detailed next.

5.2 Negative Sampling Implementation Details
To sample negatives in the object enumeration task we first build a co-occurence matrix from the bounding box annotations.
The pseudocode for building this matrix is as follows:

from pycocotools.coco import COCO
import numpy as np
train_dset = COCO(instances_path)
num_cats = len(train_dset.getCatIds())
co_occur = np.array((num_cats, num_cats))
cat_id2cont_id = {x: i for i, x in sorted(enumerate(train_dset.getCatIds()))}
for iid in train_dset.getImgIds():

anns = train_dset.loadAnns(train_dset.getAnnIds(imgIds=iid))
pres_cats = [coco_cid2cont_cid[x[’category_id’]] for x in anns]
pres_cats = np.unique(pres_cats)
for r in pres_cats:

for c in pres_cats:
if r != c:

co_occur[r, c] += 1

After building this co-occurence matrix negative classes are sampled in a manner which is aware of the classes present in
a given image. The pseudocode is as follows (using some variables from the above pseudocode):

present_cat_ids: List[int] # list of category ids present in the image
present_cont_ids = [cat_id2cont_id[x] for x in present_cat_ids

# combine co-occurence across present categories
# ensuring present categories can not be sampled
present_co_occur = co_occur[present_cont_ids].copy()
present_co_occur[:, present_cont_ids] = 0
present_co_occur = present_co_occur / present_co_occur.sum(axis=1, keepdims=True)



present_co_occur = present_co_occur.sum(axis=0)
present_co_occur = present_co_occur / present_co_occur.sum()
# sharpen distribution
present_co_occur = present_co_occur ** 10
present_co_occur = present_co_occur / present_co_occur.sum()

rng = np.random.RandomState(iid)
neg_ids = rng.choice(

sorted(train_dset.getCatIds()),
size=6,
p=present_co_occur,
replace=False

)

This method of sampling yields negative classes which commonly co-occur with positive classes in a given image. There-
fore, the object enumeration task trains the LVLM to distinguish individual objects and classes rather than relying on global
context.

5.3 Object Enumeration Data Details
In Table 3 of the main paper, we present results on THRONE, POPE and POPE-C when training with our object enumeration
task using COCO or COCO and VisualGenome as object enumeration data. Approximately 33000 of the 81479 COCO
images in the LLaVA visual instruction tuning data are contained in the VisualGenome dataset. When using COCO and
VisualGenome data, we construct the object enumeration task for an image from VisualGenome data when possible and
COCO otherwise—we do not combine COCO and VisualGenome annotations for any image.

5.4 Inference Details
In Table 3 of the main paper, we present results on THRONE, POPE and POPE-C when training with our object enumeration
task and performing the object enumeration task at inference. In the next section we show the effect of not performing object
enumeration during inference on THRONE and POPE, instead directly addressing the relevant task.

5.5 Ablation Results

Obj. Enum. Obj. Enum. Obj. Enum. THRONE POPE
Model Data Negatives Inference PCLS RCLS F 0.5

CLS P R F 1

✗ N/A N/A 79.9 65.3 76.5 58.0 98.4 73.0
COCO ✗ ✓ 82.4 69.2 79.4 64.8 95.2 77.1

LLaVA-v1.3 COCO + VG ✗ ✓ 85.8 60.4 79.1 66.0 95.3 78.0
COCO ✓ ✓ 83.2 68.8 79.9 73.2 88.2 80.0

COCO + VG ✓ ✓ 86.2 67.0 81.5 83.0 82.5 82.8

✗ N/A N/A 69.9 56.4 66.8 81.9 90.8 86.1
LLaVA-v1.5 COCO + VG ✓ ✗ 79.3 76.1 78.6 83.2 86.4 84.8

COCO + VG ✓ ✓ 86.1 77.0 84.1 89.8 83.7 86.7

Table 5. Effect of Negatives and Inference: Including negatives in our object enumeration task improves performance on THRONE and
POPE in terms of precision and F-score. Performing the object enumeration task at inference time improves performance on THRONE
and POPE, but hampers inference time as the object enumeration task can generate long sequences.



6 Limitations
In this paper we present THRONE which is a step towards measuring and mitigating hallucinations in LVLMs, nonetheless,
our work has few key limitations which we list below.
1. THRONE is concerned with only measuring hallucinations in LVLM predictions in the form of a false existence of an

object in a closed set of classes. As observed in LLMs, hallucinations are much more multifaceted and include not just
objects outside a pre-defined vocabulary, but also many abstract concepts such as wrong reasoning relating to a visual
scene as well as wrong attributes of a particular objects or person. These additional hallucinations are not possible to be
measured with THRONE without modifications.

2. The presented method of THRONE only focused on “Type-I hallucinations” which does not paint a complete picture
of the hallucinating behavior of an LVLM. Indeed we present POPE-C in Fig. 7 to extend hallucination measurements
in both Type-I and Type-II hallucinations. We present POPE-C as an extension of POPE since we observe that POPE
severely undercounts hallucinations in Type-II form.

3. Due to lack of general and exhaustive ground truth object label lists for a given image, our method relies on curated
datasets such as MCOCO or Object365 that have detailed annotations that are complete on an image level, which are
needed for our evaluation.

4. Our method focuses only on the hallucination bias of LVLMs but does not include measurements of other types of bias of
LVLM generations (e.g. related to concepts of fairness in generation) which we leave for future work.

7 Ethical Considerations
We present THRONE which is a general evaluation pipeline for measuring hallucinations (specifically “Type-I” halluci-
nations) in Large-Vision-Language Models (LVLMs). Overall we believe that our contribution is ethically positive as it
measures and shows that existing public LVLMs are not yet ready to be deployed in mission critical applications, as we
observe that they still suffer from hallucinating objects to a large extent. In addition we believe our presented evaluation
framework also provides for a “north-star” in measuring evaluation and can aid the field and practitioners alike in measuring
and making progress towards reducing evaluations in LVLMs as well as electing to use one LVLM over another. We note that
measuring societal bias in LVLMs is highly important pre-requisite before their deployment, however this is not investigated
in the current work.
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