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Real World OOD

Figure 1. Out of Domain Robustness for Object Classification using Unsupervised Generative Transition (UGT)
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Figure 2. Source and Transitional vMF dictionary Similarity

(a) The cosine similarity between source A and transitional vMF dictionary AR vectors (which are represented as circles and triangles respectively) in
this conceptual vMF dictionary feature space is represented by the line connecting the circles and pentagons. The image patches from the source and target
domains roughly corresponding to these VMF dictionary vectors are shown, which confirm that some similar image parts are represented by similar vMF
dictionary vectors in both domains irrespective of the nuisance factor in the target domain. E.g. (lower right) image patches show windows from different
vehicles - parts of objects which do not undergo much change when encountering nuisance factors like change in texture, shape and context of the vehicles.



A. FAQs

a. What are the differences/commonalities with Do-

main Adaptation and Domain Generalization w.r.t
our domain robustness setup?

The problem of OOD robustness can be considered a
niche subset of the larger unsupervised domain adap-
tation problem, and is closely related to domain gen-
eralisation and transfer learning as well. In unsuper-
vised domain adaptation[21], we often try to mitigate
dataset biases between labelled source and unlabelled
target data - there are often no constraints on type of do-
mains and biases. The goal of domain generalisation is
to learn a model, often from multiple related source do-
mains, such that the resulting model can generalize well
to any unseen target domain [25]. Although related to
both, our work focuses on an (extended) OOD robust-
ness setup, where our aim is to generalize well to an un-
labelled target domain which is parameterized by real
world nuisance factors like weather, shape, pose, tex-
ture changes and partial occlusion - which often leads
to drastic changes to visual scenes and objects in ques-
tion not found in the source dataset.

. Difference in results from the original OOD-CV[24]
paper.

Differences, if any, in our experimental results may be
attributed to different versions of same dataset used. In
case of OOD-CV dataset[24], we contacted the authors
and used their recommended version of the dataset. Ad-
ditionally, we try not to use data augmentations and ad-
ditional data to train our models which may also con-
tribute to the difference. This is done to provide a fairer
comparison between different methodologies.

. What meotivates our choice of datasets and models?

Our choice is motivated by the presence of real world
nuisances and partial occlusion in the dataset. We
chose datasets where either we could create partial oc-
clusion due to presence of object masks or there was
already a subset of the data which had partial occlu-
sion. Our choice of datasets is also constrained by the
amount of computational resources we use. As can
be seen, we conduct a large number of experiments
per model/architecture/dataset. For comparative mod-
els, we focus on works which have shown to work on
previous robustness[ 15, 17] benchmarks and some well-
known UDA works[3, 6, 14, 16, 22]. Secondary to out
choice of real world nuisance factors and partial occlu-
sion, we also test our method on Synthetic to Real trans-
fer and synthetic corruptions in order to check its effi-
cacy in these weel known setups.

. Applied partial occlusion is artificially applied on
top of objects in images.

Although the occluded data that we use for evaluation
for all our setups does have some naturally occluded

images, we use real cropped occluders to ape partial oc-
clusion in the real world. This might not be the best
solution however it is the best available since there is a
dearth of occlusion data for current vision models. Ad-
ditionally, earlier works [8, 19] have shown that partial
occlusion analysis for many computer vision tasks with
such artificially placed occluders is similar to images
with real partial occlusion.

. Can we sample from our generative model?

0

Our generative model defines a generative model on the
level of intermediate neural features and not at the im-
age level. Therefore, it is quite hard to visualize the
sampled features.

. Is dictionary space misalignment a problem?

We empirically show via our SOTA results that dic-
tionary space misalignment is not a big issue for our
method. This is likely because the appearance of object
parts may be highly variable, while the spatial geometry
of the objects remains rather similar.

Is the target domain data accessible to models while
training?

We follow the setup of OOD-CV[24] paper. For
Imagenet-C[5] and UDAParts[13], the target domain
data available for finetuning is separate from the eval-
uation data.

. Rough intuition of our work.

in this work, we exploit a hitherto unexploited property
of CompNets which is that their vMF kernels can be
learnt without supervision although learning the gen-
erative head requires supervision. This enables us to
learn a transitional vMF kernel dictionary which con-
tains properties of both the source and target domains.
We train the generative model for the CompNets on the
annotated source data, using the transitional vMF ker-
nels, and show that this model performs well on the
target domain and improves with pseudo-labeling. A
crude intuition for this approach is that the vVMF kernels
capture the visual appearance of parts which can dif-
fer between the source and target domain. We observe
that some vMF kernels are very similar in both domains
and, for example, vehicle windows largely remain un-
changed even when the context, texture and shape of the
vehicle changes (Figure 2a). This motivates us to learn
a transitional dictionary which is learnt on the target
domain but where the feature clusters are encouraged to
be similar to those on the source domain. By contrast
the parameters of the generative model capture the spa-
tial structure of the object (e.g., which parts are likely
to appear in specific locations), hence is fairly similar
in both source and target domain, and be learnt using
only supervision on the source domain.

i. Explanations regarding Equation 1-10.

Equation 1 is borrowed directly from earlier works[10]



where P(m) is a uniform prior over the spatial mix-
ture components and is written for completeness of the
Bayesian parameterization.

In Equation 2 More mixtures may lead to better results
as shown in previous works - we empirically find 4
spatial mixtures to be sufficient for image classification
task.

In Equation 4, previous works recommend fixing the
occlusion prior apriori (0.5 —0.6) given this probability
can’t often be calculated. This prior is therefore largely
uninformative, and we think calculating instance depen-
dent occlusion prior is an interesting future work for this
class of models.

In Equation 7, the prior probability is initialised using a
vMF distribution with final source parameters and tran-
sitional features. The parameter update rules in Equa-
tion 9 and Equation 10 can be derived from the gen-
eral MAP estimation equations for a vMF distribution
as described in [4] (given for Gaussian Mixture Mod-
els, but applicable for vMF mixtures). Note that Equa-
tion 9 is an approximation of the derivation which em-
pirically showed better results. The adaptation coeffi-
cients ¢ simply allow better tuning of adaptation rates
between source and transitional data. Given that we use
EM algorithm for MAP, we are guaranteed to converge
to local minima under minor assumptions.

B. Occluded-OOD-CV

Occluded-OOD-CV is a dataset which is designed to eval-
uate the robustness of a model to partial occlusion in com-
bination with a nuisance factor, namely, weather, texture,
shape, 3D pose and context. In the Occluded-OOD-CV
dataset, we simulate the partial occlusion by imposing sam-
ples of occluding objects on the primary image objects in
OOD-CV. The superimposing occluders are either naturally
present in the original OOD-CV test set or are cropped
from the MS-COCO dataset[12]. We have 3 levels of
foreground occlusions in the Occluded-OOD-CV dataset -
L1(20 — 40%), L2(40 — 60%) and L3(60 — 80%). The
total number of (test) images for each level is 3820(L1),
3728(L2) and 3606(L.3). A model which has been adapted
to the OOD-CV nuisance data (in an unsupervised manner
in our case) is then tested on the Occluded-OOD-CV data.
The model is not shown the Occluded-OOD-CV data at any
training or adapting stage. LO(0%) can be used to refer to
the normal OOD-CV dataset. Figure 3 shows a few exam-
ples from the Occluded-OOD-CV dataset.

Given the dearth of real world occlusion datasets, we
place the occluders artificially on the image objects to ape
real world occlusion. We believe that this a robust anal-
ysis of occlusion robustness as earlier works [8, 19] have
shown that partial occlusion analysis for many computer vi-
sion tasks with such artificially placed occluders is similar

to images with real partial occlusion.

C. Experiments

Our experiments are divided into three parts -

1. Real World Nuisance Factors - OOD-CV|[24] : Evalu-
ation on this dataset is the focus of this work since it
allows for real world (individual) nuisance robustness
analysis. We can, therefore, test our models’ capabil-
ity to robustly adapt to nuisance-ridden real world data
in an unsupervised manner.

2. Synthetic Corruptions - Imagenet-C[5] : We also eval-
uate model’s capability in adapting to synthetic corrup-
tions, like, snow, gaussian blur, pixelate, elastic trans-
form, etc, taken from Imagenet-C[5].

3. Synthetic to Real - UDAParts[13] (to Pascal3D+[20]) :
We do an initial analysis of synthetic to real transfer us-
ing images created from UDAParts dataset.

Our choice of datasets is motivated by the fact that we want

to evaluate a model’s robustness to individual corruptions

(real or synthetic) and partial occlusion. Since, our focus

is primarily on evaluating model’s robustness to unlabelled

(real world) nuisance ridden data and occlusion, we choose

OOD-CV|[24] as our primary evaluation data. We also apply

Imagenet-C corruptions on Pascal3D+ objects[20] which

allows us to evaluate our models on the compounded prob-

lem of synthetic corruptions and partial occlusion given that

the dataset has a occluded version (Occluded Pascal) [19].
In order to further evaluate the capabilities of our model,

we also include a synthetic to real robustness analysis. For

this, we use images rendered from the object models of the

UDAParts [13] dataset and then test our model on the same

object set of Pascal3D+ dataset. Again, in inclusion to the

synthetic data OOD robustness problem, we have partial oc-

clusion added to the evaluation data [19].

C.1. OOD-CV

We evaluate all models on OOD-CV nuisance ridden test
data (weather, context, texture, pose, shape) as well as our
extended OOD setup which included Occluded OOD-CV
with 3 levels of partial occlusions (L1(0 — 20%), L2(20 —
40%), L3(40 — 60%)). The unoccluded data can also be
referred to as LO.

C.1.1 Training Details

For RPL[15] and BNA[17], we used the official
implementation[2]. For CompNets[10] as well, we used
the official implementation[l]. For CompNets[10] and
our model, to get feature vectors, we used a model back-
bone trained on the OOD-CV[24] training data. We use
VGG16 (with Batch Normalization) and Residual Network
(resnet50) for all models as model backbones as most afore-
mentioned works use them. For CompNets[10] and our



Figure 4. Subset of images from OOD-CV dataset activated by the same transitional spatial coefficient for clean source (top) data and

nuisance ridden target (bottom) data.

model, we use k = 30 (vMF variance) and the length of
vMF dictionary is 512, with each vMF dictionary vector be-
ing 1x512. The initial VGG16 and Resnet50 backbones are
trained using OOD-CV training data with 90-10 training-
validation data split, and the same backbones are used for

all the methods. These baseline backbones are trained using
stochastic gradient descent optimizer with an initial learn-
ing rate of .0001 and weight decay of .0005. The batch
size is 64 and the learning rate is changed by an exponential
learning rate scheduler which decays the learning rate of



Table 1. Category-wise (Top-1) classification results for OOD-CV[24] (Combined Nuisance)

Model Dataset Acc. plane Dbicycle boat bus car chair table motorbike sofa train
UGT(ours) LO .85 92 924 823 846 823 .62 931 .82 95 882
UGT(ours) L1 .6221  .825 755 S14 665 612 271 .621 .622 736 .6

UGT/(ours) L2 5684 .694 .689 495 588 534 255 595 .605 734495
UGT/(ours) L3 5001 599 .623 435 521 499 21 515 577 655 367
Compnet[11] LO 12 782 .803 867 72 759 364  .849 .847 812 729
Compnet[11] L1 506 528 552 701 566 397 223 676 .65 587 385
Compnet[11] L2 462 494 501 699 469 303 214 613 .631 588 315
Compnet[11] L3 415 491 451 598 394 289 156 537 .604 444 278
CDAN[14] LO .76 .802 .822 781 609  .891 .669 471 .835 934 85

CDAN[14] L1 531 .627 415 459 384 601 .615 455 .656 774 467
CDAN[14] L2 42 .507 313 412 232 461  .604 253 483 758 341
CDAN[14] L3 .38 443 .26 344 187 404  .658 235 447 .661 294
BSP[3] LO 153 795 .8 713 677 883 .65 673 a7 916 .802
BSP[3] L1 506 577 421 346 389 .624 591 S1 532 798 382
BSP[3] L2 401 .506 .28 3 236 465 542 394 433 728 293
BSP[3] L3 351 431 268 217 197 38  .604 294 .393 682 242
MDD[22] LO 78 .847 .843 756 .643 912 742 534 .869 .88 782
MDD[22] L1 551 .668 496 452 407 622 .628 455 719 .677 335
MDDJ[22] L2 469 561 354 423 218 497  .639 309 .583 633 243
MDDJ22] L3 41 514 339 326 167 44 639 227 547 54419

MCDI16] LO 72 895 .844 761 761 848 .673  .656 902 923 782
MCDI16] L1 556 755 484 414 47 432 506 531 719 16 377
MCD[16] L2 461 .614 .36 391 293 335 494 .38 .635 748 284
MCD[16] L3 403 .559 322 282 221 262 494 294 .569 634 212
MCC[6] LO 785 .83 .81 697 725 865 405 373 738 41375

MC(C[6] L1 582 525 492 336 S 482 341 222 461 383 413
MC(C[6] L2 492 457 375 282 3 39 264 A5 354 283 316
MCCI[6] L3 434 415 326 214 278 327 235 126 314 209 .28

each parameter group by gamma= 0.95 every 15 epochs.
We use the same optimizer and learning rate schedules for
our BNA[17] and RPL[15] experiments. For the general-
ized cross entropy loss[23], we use the recommended hy-
perparameter value ¢ = 0.8 in all experimental usage. Hy-
perparameters v, = ¢, = 3 for both CompNets and UGT.
For finetuning our model, we freeze the model backbone
parameters.

For MCC [6], CDAN [14], MCD [16], MDD [22] and
BSP [3], we use the Transfer Learning library[7] imple-
mentations. We use the recommended hyperparameters for
each method. Although, we do not use an Imagenet pre-
trained backbone for CompNets[10], RPL[15], BNA[17]
and our method (UGT) as an Imagenet trained backbone
would provide an unfair advantage to the method in the task
of OOD robustness for an unlabelled data. However, for
MCC [6], CDAN [14], MCD [16], MDD [22] and BSP [3],
which are all well known Unsupervised Domain Adaptation
methods, the model performance is not good when train-
ing from scratch. And therefore, we relax this pretrained

backbone constraint for these methods, and show that even
though our method is not using an Imagenet backbone, we
are still able to perform better than current state-of-the-art
OOD robustness[15, 17] and unsupervised domain adapta-
tion methods [3, 6, 14, 16, 22].

C.2. Imagenet-C

Since previous OOD robustness methods [15, 17] primarily
use synthetic corruptions [5], we employ the same corrup-
tions and apply them to objects from Pascal3D+ dataset.
The objective is to robustly adapt to an unlabelled data of
synthetically corrupted images when the training data con-
sists of only clean images. We apply synthetic corruptions
to Pascal3D+ test data for our evaluation. Tables 5, 6, 7, 8
show additional classification accuracy results on different
corruption target dataset versions.

Training Details We follow the same training method-
ology as mentioned in Section C.1.1.



Table 2. Category-wise (Top-1) classification results for OOD-CV[24] (Context Nuisance)

Model Dataset Acc. plane bicycle boat bus car chair table* motorbike sofa train
UGT(ours) LO 875 927 .99 .857 1 NA  .733 NA 432 935 789
UGT(ours) L1 624 .679 .822 .643 4 45 .634 .167 31 .81 .698
UGT(ours) L2 565 .634 786 643 35 31 495 .167 .209 765 595
UGT(ours) L3 S11 554 713 537 2 .29 433 .167 .139 7 579
CDANJ[14] LO 1 .682 564 918 75 NA .766 NA .675 798  .802
CDAN[14] L1 541 462 .389 595 4 5 702 521 432 .681 511
CDAN[14] L2 436 435 23 .523 0 464 626 .333 .194 .636  .357
CDAN[14] L3 397 391 .269 292 0 178 742 183 .194 56 0 342
BSP[3] LO .61 476 455 857 75 NA i NA 459 83 591
BSP[3] L1 S11 339 372 452 6 821 782 521 27 .663 302
BSP[3] L2 419 237 .256 .38 0 571 747 378 .166 .654 19
BSP[3] L3 385 228 .304 219 2 5 762 3 11 51 236
MCD[16] LO 798 695 .821 959 75 NA 833 NA 918 .693 619
MCD[16] L1 523 .566 .542 547 6 1 .653 .376 486 .603 372
MCD[16] L2 426 445 .35 5 .08 .46 .595 272 277 .6 .309
MCD[16] L3 374 467 391 317 4 357 649 233 277 51 342
Table 3. Category-wise (Top-1) classification results for OOD-CV[24] (Weather Nuisance)
Model Dataset Acc. plane bicycle boat bus car chair motorbike train
UGT(ours) LO 856  .857 .875 91 882 .77 1 .843 .892
UGT(ours) L1 .6 778 .623 599 545 51 NA 15 46
UGT(ours) L2 .53 i .607 S517 0 364 401 NA .686 487
UGT(ours) L3 465 558 534 479 438 .37 NA .67 322
CDAN[14] LO 745 .694 .818 759 764 77 1 .883 .89
CDAN[14] L1 476 538 491 46 272 45 NA 713 367
CDAN[14] L2 335 404 341 394 151 24 NA .559 269
CDAN[14] L3 299 386 318 338 093 .23 NA .605 .156
BSP[3] LO 73 .583 7187 665 852 .73 .629 .831 .867
BSP[3] L1 391 383 516 322 272 .52 NA .593 261
BSP[3] L2 266 271 418 238 181 .29 NA .381 183
BSP[3] L3 254 251 .387 232 125 .26 NA 412 17
MCD[16] LO .81 791 .852 763 877 49 925 .841 .849
MCDJ[16] L1 447 627 .565 552 393 35 NA 754 336
MCDJ[16] L2 336 491 41 462 303 .19 NA .697 242
MCDJ[16] L3 286 429 405 401 .156 2 NA .655 .189
Table 4. Hyperparameters
Model Backbone epochs Ir Batch layer
Compnet[10] VGGI16 60 0.01 64 pool5
RPL[15] VGG16 60 0.0001 64 -
BNA[17] VGG16 60 0.0001 64 -
UGT (Ours) VGGI16 50 0.01 64 pool5
Compnet[10] Resnet50 60 0.01 64 layer4
RPL[15] Resnet50 60 0.0001 64 -
BNA[17] Resnet50 60 0.0001 64 -
UGT (Ours) Resnet50 50 0.01 64 layer4




Figure 5. Example Images with Snow and Elastic corruptions (Severity 4) from Imagenet-C

Table 5. Imagenet-C Snow Corruption (Severity 4) Classification Results

Model Backbone L0 L1 L2 L3
(20-40%) (40-60%) (60-80%)

Compnet[10] VGG16 0.529 0.348 0.258 0.21

RPL[15] VGG16 0.854 0.592 0.435 0.408
UGT (Ours) VGGI16 0.885 0.742 0.634 0.523
RPL[15] Resnet50 0.725 0.589 0.442 0.379
BNA[17] Resnet50 0.74 0.61 0.488 0.406
UGT (Ours) Resnet50 0.766 0.633 0.556 0.49

Table 6. Imagenet-C Gaussian Noise Corruption (Severity 4) Classification Results

Model Backbone L0 L1 L2 L3
(20-40%) (40-60%) (60-80%)
Compnet[10] VGGI16 0.549 0.361 0.221 0.171
RPL[15] VGG16 0.87 0.619 0.468 0.342
UGT (Ours) VGGI16 0.87 0.735 0.643 0.535

Table 7. Imagenet-C Shot Noise Corruption (Severity 4) Classification Results

Model Backbone L0 L1 L2 L3
(20-40%) (40-60%) (60-80%)
Compnet[10] VGGI16 0.514 0.285 0.189 0.15
RPL[15] VGG16 0.883 0.63 0.472 0.343
UGT (Ours) VGGI16 0.883 0.746 0.648 0.532

C.3. UDAParts (Synthetic to Real)

Figure 6 shows an example of the synthetically created im-
ages that are used as our training data. They have created
using object models and rendered using random 3D pose,
texture and background. The purpose of this task is to make
the model (which has trained on the synthetic data) robust
to the OOD real data, which in this case is Pascal3D+. Ad-
ditionally, the model needs to be robust to OOD real data
which suffers from partial occlusion[19]. We choose around

2000 random images from the randomly generated images
in UDAParts for each class of object as our training set.
Training Details We follow the same training methodol-
ogy as mentioned in Section C.1.1.

Figure 7 shows an example of images which are activated by
the same transitional spatial coefficient in the source (UDA-
Parts) and target (Pascal3D+) dataset.



Table 8. Imagenet-C Pixelate Corruption (Severity 4) Classification Results

Model Backbone Lo L1 L2 L3
(20-40%) (40-60%) (60-80%)

Compnet[10] VGGI16 0.852 0.531 0.39 0.304
RPL[15] VGG16 0.946 0.639 0.446 0.346
UGT (Ours) VGGI16 0.943 0.815 0.713 0.591
RPL[15] Resnet50  0.948 0.626 0.435 0.33
BNA[17] Resnet50 0.94 0.7 0.514 0.393
UGT (Ours) Resnet50 0.962 0.79 0.653 0.55

Table 9. Imagenet-C Glass Blur Noise Corruption (Severity 4) Classification Results

Model Backbone L0 L1 L2 L3
(20-40%) (40-60%) (60-80%)
Compnet[10] VGG16 0.56 0.35 0.29 0.26
RPL[15] VGG16 0.80 0.49 0.39 0.31
UGT (Ours) VGG16 0.81 0.53 0.44 0.37

Figure 6. Examples from UDAParts dataset

C.4. Data Augmentation and Model Backbones

We avoid using different data augmentations to ensure a fair
and balanced comparison between all methods. Though,
additional data or different kinds of data augmentations do
help alleviate the problem, we focus on the methodology
aspect and avoid using various kinds of data augmentations
or additional data for all methods. Similarly, we keep the
model backbones’ similar, whenever possible to allow for a

fairer comparison.

C.5. Training Cost

Training Costs (time) is similar to the baseline generative
model [10] as we are only finetuning a few layers(spatial
mixture matrix). Our code isn’t optimized yet and our
method, sans the finetuning, uses only the CPU. On AMD
5700x CPU and for a training data size of 10k samples,it
takes 6 hrs to learn the transitional model and 15 minutes



Figure 7. Subset of images activated by the same transitional spatial coefficient for synthetic source (top) data and real target (bottom) data.

to finetune the model for 10 epochs on a Nvidia 3070.

D. Ablation

As we show in our ablation results in the main draft, each
individual improvement of our method, UGT, markedly im-
proves the classification results for unsupervised domain ro-
bustness. Here, A® + AT refers to calculating transitional
vMF dictionary and then calculating the spatial coefficients
using this transitional dictionary and source feature vectors.
AR’ refers to the finetuned transitional spatial coefficient.

In Tables 10, 11, 12, 13 and 14, we can see the improve-
ments in Imagenet-C experiments where different kinds of
Imagenet-C corruptions are applied to objects from Pas-
cal3D+ dataset.

We can notice that just learning the transitional parame-
ters is often enough to drastically improve model’s perfor-
mance underlying its importance in our work.

E. Transitional vMF dictionary

The transitional vMF dictionary is learnt by initializing the
dictionary vectors with learnt A° and regularizing the learn-
ing of A® by the cosine distance between ;S and p%.
Since, the directional parameter or the vMF variance (o /)
is constant (and therefore, the normalization term in the de-
nominator is constant), y is the only parameter being learnt.

Figure 2a gives an intuition regarding the source and transi-
tional vMF kernels.

Cosine distance between initial and optimized transitional dictionary vectors
251

i =1

s

wvector number

Cosine distance

Figure 8. Histogram representing the cosine distance between ini-
tial and final transitional dictionary vectors with different values
of ’g/)k

Also, as we can see in Figure 8, the choice of the adapta-
tion coefficients 1), which represents the hyperparameters
used to tune the adaptation between source and transitional
Lk, 18 not that critical. Figure 8 represents the learning of
VvMF kernel dictionary for the combined nuisance experi-
ment where the entire OOD-CV test data is considered the
target domain. All the normalized )y, are initialized to an
arbitrary value between 0 and 1 and then step wise increased



Table 10. Ablation analysis for Imagenet-C (Gaussian Noise Corruption) Classification

Model Backbone OOD-CV Occ.-OOD-CV  Ocec.-OOD-CV  Occ.-OOD-CV
(20-40%) (40-60%) (60-80%)
Baseline(B) VGG16 0.549 0.361 0.221 0.171
+AR + AR VGGI16 0.765 0.723 0.533 0.423
+AR + AR VGG16 0.87 0.735 0.643 0.535

Table 11. Ablation analysis for Imagenet-C (Pixelate Corruption) Classification

Model Backbone OOD-CV Occ.-OOD-CV  Occ.-O0OD-CV  Occ.-O0OD-CV
(20-40%) (40-60%) (60-80%)
Baseline(B) VGG16 0.852 0.531 0.39 0.304
+AR + AR VGGI16 0.911 0.732 0.597 0.511
+AR + AR VGG16 0.943 0.815 0.713 0.591

Table 12. Ablation analysis for Imagenet-C (Motion Blur Corruption) Classification

Model Backbone OOD-CV Occ.-OOD-CV  Occ.-OOD-CV  Occ.-OOD-CV
(20-40%) (40-60%) (60-80%)
Baseline(B) VGG16 0.639 0.362 0.287 0.241
+AR + AR VGG16 0.789 0.631 0.492 0.413
+AR + AR VGG16 0.891 0.763 0.673 0.567

Table 13. Ablation analysis for Imagenet-C (Shot Noise Corruption) Classification

Model Backbone OOD-CV Occ.-OOD-CV  Occ.-OOD-CV  Occ.-OOD-CV
(20-40%) (40-60%) (60-80%)
Baseline(B) VGG16 0.514 0.285 0.189 0.15
+AR + AR VGGI16 0.752 0.596 0.518 0.418
+AR + AR VGG16 0.883 0.746 0.648 0.532

Table 14. Ablation analysis for Imagenet-C (Gaussian Blur Corruption) Classification

Model Backbone OOD-CV Occ.-OOD-CV  Occ.-OOD-CV  Occ.-OOD-CV
(20-40%) (40-60%) (60-80%)
Baseline(B) VGG16 0.732 0.395 0.296 0.241
+AR + AR VGGI16 0.848 0.615 0.5 0.387
+AR + AR VGG16 0.909 0.72 0.613 0.509

until likelihood improvement of the particular vMF dictio-
nary vector is below a threshold value(le — 5). As seen in
the figure, different initial values for the adaptation coeffi-
cient produce similar results and therefore the usage of the
data dependent/adaptive coefficient is optional in our exper-

iments.

Figures 9,10 and 11 show examples of source and their
corresponding transitional vVMF dictionary vector image
patches. The image patches roughly correspond to parts of
an image in the data which has high activations for a spe-



Table 15. Ablation analysis for Imagenet-C (Elastic Transformation Corruption) Classification

Model Backbone OOD-CV Occ.-OOD-CV  Occ.-OOD-CV  Ocec.-OOD-CV
(20-40%) (40-60%) (60-80%)
Baseline(B) VGG16 0.268 0.183 0.157 0.146
+AR + AR VGGI16 0.771 0.637 0.549 0.465
+AR + AR VGG16 0.872 0.712 0.712 0.494

cific vMF dictionary vector. The image patches are from
the training and evaluation sets of OOD-CV dataset respec-
tively, which have been curated to filter out training like
data in the nuisance factored test set. However, we can still
notice that the approximate image patches actually corre-
spond to similar object parts despite drastic changes in 3D
pose, shape, texture, weather, etc. For e.g, in Figure 9, we
can see patches focusing on vehicle windows, bicycle and
motorbike handlebars, etc.

E.1. Finetuning via Pseudo-Labelling

We finetune our transitional spatial coefficients by simple
pseudo-labelling on a target data subset. This subset is
not used during evaluation - although test time finetuning
can be performed to improve the model’s performance dur-
ing inference. We do not follow any sophisticated pseudo-
labelling methods and simply use a high threshold value (e.g
0.8) for the final class activations to pseudo-label target do-
main samples. We can, presumably, achieve higher perfor-
mance using better and more sophisticated pseudo-labelling
and finetuning methods, however, this is not a point of con-
cern for this work.

F. Future Work and Limitations

Figure 12 shows that our adapted image classifica-
tion model is capable of localizing occluders (like
CompNets[10] do in a non-corrupted scenario) even in a
nuisance ridden target image. Thus, we think that applica-
tions like object detection and segmentation are interesting
future applications of our work.

In terms of limitations, our method may not work in case
of extreme divergence between the source and target do-
mains which may be be caused by inter-domain noise or
large difference in both domain object parts and their spa-
tial orientations. Our model is also bound to the assump-
tions and weaknesses of the Bayesian, generative model [9]
which we build upon, a discussion of which can be found in
the relevant works, like [10, 11, 18].

Figure 9. Image patches from OOD-CV training (left) and nui-
sance test (right) data which have high activations for correspond-
ing VMF vectors from the source (initialised A™) and transitional
vMF dictionaries.



Figure 12. Occluder localization in a snow corrupted car image
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