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In this supplementary material, we provide additional imple-
mentation details in Sec. A and present additional quantita-
tive and qualitative results in Sec. B and Sec. C, respectively.

A. Implementation Details
A.1. Mixed Dataset Training

We train on two synthetic datasets, Hypersim [9] and Virtual
KITTI [1], whose images have different resolutions and
aspect ratios. For each batch, we probabilistically choose
the dataset and then draw samples from it. We ablate the
Bernoulli parameter of dataset sampling in Sec. B.4.

A.2. Annealed Multi-Resolution Noise

In the standard multi-resolution noise, multiple Gaussian
noise images are sampled to form a pyramid of resolutions
and then subsequently combined by upsampling, weighted
averaging, and renormalization. The weight for the i-th
pyramid level is computed as s°, where 0 < s < 1isa
strength of influence of lower-resolution noise. To bring
such noise closer to the Gaussian used in the original DDPM
formulation, we propose to anneal the weight of levels 7 > 0
based on the diffusion schedule. Specifically, we assign the i-
th level at timestep ¢ the weight (st /T')?, where T is the total
number of diffusion steps. Thus, a smaller weight is given to
lower-resolution levels at timesteps closer to the noise-free
end of the schedule. In addition to the ablation study in
the main paper, we further demonstrate the effectiveness of
annealing and other noise settings in Sec. B.3.

A.3. Alignment with Ground Truth Depth

Following the established evaluation protocol [7], we use
least squares fitting over pixels with valid ground truth values
to compute the scale and shift factors of the affine-invariant
predictions. Note that, while some methods predict affine-
invariant disparities [3, 7, 8], others (including ours) predict
affine-invariant depth values [13—15]. We apply least squares
fitting accordingly, i.e. the disparities are aligned to the in-
verse ground truth depth.

A.4. Visualization in 3D

We compute the scale and shift scalars between the predic-
tion and ground truth. Subsequently, we unproject pixels
into the metric 3D space using the camera intrinsics. We
manually estimate the scale, shift, and intrinsics of “in-the-
wild” samples, where ground truth and camera intrinsics
are unavailable. For some samples, camera intrinsics can
also be extracted from the EXIF metadata. To visualize nor-
mals, we perform least squares plane fitting at each position,
considering a neighborhood area of 3 x 3 pixels around it.

B. Experimental Results
B.1. Stable Diffusion VAE with Depth

To assess how well the pre-trained image variational autoen-
coder of Stable Diffusion [10] works with depth maps, we
tested it with 800 samples from the Hypersim [9] training
set. To this end, each sample is normalized to the operational
range of VAE as explained in the main paper, and replicated
three times to accommodate the RGB interface. Upon de-
coding the latents, the reconstructed depth map is derived by
averaging the three RGB channels. Over the chosen set of
depth maps, the Mean Absolute Error (MAE) of reconstruc-
tions is 0.0095 £ 0.0091, which is safely below the current
state-of-the-art depth estimation errors.

B.2. Consistency of Channels After VAE Decoder

To further understand the suitability of the Stable Diffu-
sion latent space for depth representation, we evaluate the
agreement of depth channels obtained from the VAE de-
coder during inference. We validate with the training split of
NYUv2 [6] and a subsampled Eigen training split [4] of the
KITTI dataset [5]. As shown in Tab. S1, the channel-wise
discrepancy resulting from decoding depth from the latent
space is small relative to the value range of the decoder out-
put, i.e., [—1, 1]. This could be related to the ability of VAE
to represent gray-scale RGB images.



Table S1. Consistency of channels after VAE decoder. The
reported numbers are averaged over the respective datasets.

std max — min

NYU  0.0027 0.0062
KITTI 0.0022 0.0052

B.3. Prediction Variance and Training Noise

Since Marigold is a generative model, the predictions vary
depending on the initial noise starting the diffusion process.
We evaluate the consistency of predictions of three models,
trained differently, i.e., with Gaussian noise, multi-resolution
noise, and annealed multi-resolution noise. We train with
two synthetic datasets and validate with the training split
of NYUv2 [6] and a subsampled Eigen training split [4] of
the KITTI dataset [5]. Specifically, we perform inference
10 times for each sample and compute pixel-wise statis-
tics over the resulting depth predictions. Subsequently, we
aggregate these statistics across entire datasets and report
them in Tab. S2. As seen from the values, training with
the multi-resolution noises increases the prediction consis-
tency at inference, and the annealed version brings further
improvement. Fig. S1 demonstrates predictions for a single
sample with three models and varying starting noise.

Table S2. Pixel-wise consistency of depth predictions made by
models trained with three different noise types. The reported
numbers are averaged over entire datasets, wherein each sample
was processed 10 times, starting from a new noise sample.

Multi-res. NYUv2 KITTI
. Annealed . .
noise std max — min std max — min
X X 0.086 0.260 0.050 0.152
v X 0.037 0.117 0.030 0.094
v v 0.033 0.106 0.025 0.079
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Figure S1. Example of predictions on the same input by models
trained with (top-down) Gaussian, multi-resolution, and annealed
multi-resolution noise. The last row exhibits the least variance.

B.4. Ratio of Mixed Training Datasets

To further investigate the impact of the synthetic datasets
used in our fine-tuning protocol, we ablate the mixing ra-
tio of the datasets, discussed in Sec. A.1. We train with
two synthetic datasets, Hypersim [9] and Virtual KITTI [1],
and validate with the training split of NYUv2 [6] and a sub-
sampled Eigen training split [4] of the KITTI dataset [5].
As shown in Tab. S3, training with a mixture of these two
synthetic datasets yields better results on both indoor and
outdoor real datasets, than training with a single synthetic
dataset. Interestingly, based on the higher-quality indoor
dataset, Hypersim [9], adding a small portion (5%) of Vir-
tual KITTI [1], a street-view dataset, can already increase
the performance on the outdoor dataset. We find a sweet spot
at around 10% where the performance is improved on both
indoor and outdoor scenes. When the ratio of Virtual KITTI
keeps increasing, the overall performance is impaired. This
is likely caused by the varying scene diversity and rendering
quality of these two datasets.

Table S3. Ablation study of the training dataset mixing strategy.
Our method trained with only Hypersim delivers strong results.
Outdoor performance is further enhanced with a small portion of
Virtual KITTI. The zero-shot transfer is attained at 10% ratio.

Hypersim Virtual NYUv2 KITTI
P KITTI AbsRel]  §17  AbsRel] 4§17
100% 0% 5.7 963 137 825
95% 5% 5.8 962  11.1 888
90% 10% 56 965 113 887
50% 50% 6.0 960 128 855
0% 100% 139 834 154 793
B.5. Inference Speed

In Fig. S2, we report inference runtime, aligned with the
settings from Figs. 6, 7. We acknowledge the slower speed vs.
higher quality trade-off compared to feed-forward methods.
Speed can be enhanced in future research, e.g. distillation
for 2- or 4-step denoising schedules, and reducing prediction
variance for smaller ensemble sizes.
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Figure S2. Inference speed on a single GPU with NYUv2 dataset.



C. Qualitative Comparisons
C.1. In-the-Wild

We present the gallery of “in-the-wild” images and corre-
sponding predictions in Fig. S3. The input images are taken
in daily life or downloaded from the internet. Our method,
Marigold, predicts accurate depth maps, exhibiting better
overall layout and fine details. We show the final predictions
for each method, that is, depth for Marigold and LeReS, and
disparity for MiDaS.

C.2. Test Datasets

We show additional qualitative comparisons with our com-
petitors [3, 7, 8, 13, 14], on 5 test datasets [2, 5, 6, 11, 12].
The depth maps are visualized in Fig. S4, and the normal
maps can be found in Fig. S5. Marigold excels at capturing
fine scene details and reflecting the global scene layout.
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Figure S3. Qualitative comparison on in-the-wild scenes. Marigold and LeReS predict depth (with red indicating closer and blue indicating
farther distances), while MiDaS predicts disparity (with yellow signifying closer and purple signifying farther distances).
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Figure S4. Qualitative comparison (depth) of monocular depth estimation methods across different datasets. Predictions are aligned to
ground truth. For every sample, the color coding is consistent across all depth maps.
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Figure S5. Qualitative comparison (unprojected, colored as normals) of monocular depth estimation methods across different datasets.
Ground truth normals are derived from the ground truth depth maps.
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