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A. Observation Experiments

We utilized the Mutual Information Neural Estimator
(MINE)1 [3] as a mutual information estimator to inde-
pendently assess the mutual information between view-
consistent representations and view-specific representations
proposed by CONAN2 [11], DVIB3 [2], Multi-VAE4 [25],
and our approach. To ensure a fair comparison, we stan-
dardized the representation dimensions of all comparative
methods to 10. For constructing the MINE estimator, we
employed fully connected layers with Rectified Linear Unit
(ReLU) activation, specifying the network architecture as
20-100-100-100-1. We use Adam with the learning rate of
1×10−4 and the batch size of 128 to train the model for 500
epochs. To mitigate randomness, we executed the MINE
procedure 10 times and recorded the average results.

B. Related Work

Multi-view Representation Learning. The goal of
MvRL is to extract both shared and view-specific infor-
mation from multiple data sources, integrating them into a
cohesive representation that is advantageous for predictive
tasks [5, 13, 16]. Existing approaches in this field gener-
ally fall into three categories: statistic-based, deep learning-
based, and hybrid methods.

Statistic-based methods, employing techniques like
canonical correlation analysis [6, 15], non-negative matrix
factorization [14, 23], and subspace methods [4, 22], excel
in deriving interpretable models. However, they struggle
with datasets that are high-dimensional or large-scale. In
contrast, deep learning-based methods have gained promi-
nence, especially in unsupervised settings, where generative
models such as autoencoders [1, 21, 27] and generative ad-
versarial networks [29] are used to learn latent representa-
tions. Although effective, these methods face the challenge

1Code is accessible at: https://github.com/gtegner/
mine-pytorch/

2Code is accessible at: https://github.com/Guanzhou-Ke/
conan

3Code is accessible at: https://github.com/feng-bao-
ucsf/DVIB

4Code is accessible at: https : / / github . com /
SubmissionsIn/Multi-VAE

Algorithm 1 The pseudo-code of the proposed method.

Input: X = {x(1), x(2), · · · , x(v)|x(i) ∈ Rn×dv}, the
consistent encoder Ec, view-specific encoders and de-
coders {E(i)

s }vi=1, {D(i)
s }vi=1

Output: the view-consistent representation c, and view-
specific representations {s(i)}vi=1

1: masked inputs {x(i)}vi=1 → {x̂(i)}vi=1.
2: c← concatenating all of Ec(x̂) ’s outputs.
3: computing the consistent loss Lc using Eq.(3) .
4: fixed the the consistent encoder Ec.
5: repeat
6: {s(i)}Vi=1 ← E

(i)
s ({x(i)}vi=1), and c ←

Ec({x(i)}vi=1)
7: computing the disentangling loss Li

d using Eq. (5).
8: computing the reconstruction loss Li

r using Eq. (6).
9: until Ls convergence.

of redundancy when concatenating representations from all
views, leading to suboptimal results for downstream tasks.
Researchers have attempted to address this by exploring fu-
sion methods for multi-view representations [11, 19, 24].
Nevertheless, deep learning-based methods often lack in-
terpretability, being perceived as “black-box” approaches.
Hybrid methods, such as those found in [10, 17, 28], com-
bine statistical and deep learning approaches. They use
deep learning for feature extraction and statistical learning
for modeling interpretable representations. These meth-
ods effectively balance the strengths of both approaches
but require substantial computational resources for post-
processing.

Our approach is categorized under deep learning-based
methods. We distinguish our work by utilizing deep learn-
ing’s capacity to handle large datasets effectively. More-
over, we address the interpretability challenges in represen-
tations by incorporating disentanglement techniques.

C. Pseudo-code of MRDD

See Algorithm 1.
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Figure 1. Illustration of encoder, where H , W , and C denote the
height, width, and channels of an image, respectively. B denotes
the number of output channels.

D. Network Structures
We employed convolutional neural networks to con-

struct both the encoder and decoder components in our ap-
proach, ensuring a symmetric structure for both. As de-
picted in Fig. 1, an encoder block comprises two convolu-
tional layers, two batch normalization layers, and a dropout
module. These encoder blocks are then stacked to form the
complete encoder. In the decoder architecture, the Conv
module is substituted with the ConvTranspose2d mod-
ule in PyTorch.

The output channel base, denoted as B, is set at 16 by
default. To maintain consistent latent representations, we
devised two distinct architectures tailored to different data
dimensions. For data with a dimension of 32, only the first
three layers from Figure 1 are utilized in both the encoder
and decoder structures. Conversely, for data with a dimen-
sion of 64, we incorporate four blocks to constitute the en-
coder and decoder structures, ensuring the output dimension
is normalized to 8 × 8. This approach is crucial for main-
taining coherence across varying data dimensions.

E. Evaluation Metrics
To evaluate the performance of clustering, we apply

three well-known metrics to the comparative experiments,
including clustering accuracy (ACCclu) and normalized
mutual information (NMI). Given sample xj ∈ xi for any
j ∈ {1, 2, · · · , n}, the predicated clustering label and the
real label are indicated as yj and cj , respectively. The
ACCclu is defined as:

ACCclu =

∑N
i=1 δ(yj ,map(cj))

N
(1)

where yj ∈ Y represents ground-truth labels and cj ∈
C denotes predicted clustering labels which generated by
kmeans; δ(a, b) is the indicator function, i.e., δ(a, b) = 1 if
a = b, and δ(a, b) = 0 otherwise; map(·) is the mapping
function corresponding to the best one-to-one assignment of
clusters to labels implemented by the Hungarian algorithm
[12]; Then NMI is computed by:

NMI =
I(Y;C)

1
2 (H(Y) +H(C))

(2)

I(·; ·) and H(·) represent mutual information and entropy
functionals, respectively.

As for the classification task, we compute classification
accuracy (ACCcls) and F-score to report classification re-
sults, as shown below.

Fscore =
2× P ×R

P +R
(3)

where P = TP
TP+FP ; TP and FP are the number of true

positives and the number of false positives, respectively;
R = TP

TP+FN , where FN is the number of false negatives.
Higher values of all of the aforementioned metrics indicate
better performance.

F. Classification Results
We evaluated the performance of all baseline models

through classification tasks on the E-FMNIST and COIL-
20 datasets, as summarized in Table 1. The results illumi-
nate that, within the same experimental framework, the rep-
resentations extracted by our method significantly enhance
classification performance. Notably, in comparison to the
second-best method, UNITER, our MRDD-cs approach
demonstrated improvements of 4.59 and 4.58 in terms of
Accuracy (ACCcls) and F-score on the E-FMNIST dataset,
respectively. These outcomes underscore that minimizing
redundancy between view-consistent and view-specific rep-
resentations proves advantageous in augmenting the effec-
tiveness of downstream tasks.

G. Ablation Study
G.1. The dimension of consistency and specificity

We investigate the impact of view-consistent and view-
specific representations extracted by our method across
various dimensions. The view-consistent representa-
tion dimensions are set within the range 5, 10, 15, 20,
while the view-specific representation dimension spans
5, 10, 15, 20, 40. As illustrated in Fig. 2, the results show
a positive correlation with the view-specific representation
dimension when the view-consistent representation dimen-
sion is held constant. Specifically, when the dimensions of
view-consistent representations are fixed at 20, a noticeable
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Figure 2. The clustering results (%) of the different dimensions of consistency and specificity on the COIL-20, COIL-100, and Office-31
datasets. The x-axis represents the consistency dimension, the y-axis represents the specificity dimension, and the z-axis represents the
clustering accuracy.

MRDD-𝑐 MRDD-𝑐𝑠 MRDD-𝑐 MRDD-𝑐𝑠 MRDD-𝑐 MRDD-𝑐𝑠

(a) COIL-20 (b) COIL-100 (c) Office-31

Figure 3. Visualization of the representations of MRDD-c and MRDD-cs using t-SNE [20] on the COIL-20, COIL-100, and Office-31.

E-FMNIST COIL-20

Method ACCcls F-Score ACCcls F-Score

Random 9.99±0.13 9.99±0.13 4.60±0.67 3.11±0.46
Joint-VAE[7] 56.50±0.23 56.39±0.21 87.76 ±2.00 84.24 ±3.16
β-VAE [9] 56.04±0.42 55.99±0.41 51.21±1.69 49.81±1.41

CONAN† [11] 58.13±0.21 55.74±0.15 67.53±2.72 61.54±2.82
CMC† [18] 67.43±0.13 64.85±0.17 89.16±0.01 89.15±0.01
Multi-VAE [25] 81.54±0.38 79.43±0.24 90.39±1.12 89.32±1.53
MIB [8] 75.33±0.05 73.80±0.05 59.72±2.29 53.99±2.03
DVIB [2] 72.18±0.29 72.91±0.22 44.31±3.30 42.17±3.02
UNITER [26] 84.19±0.11 84.10±0.11 91.27±0.94 90.58±1.01

MRDD-c (Ours) 82.51 ±0.30 82.28±0.29 88.18±0.96 87.57±0.82
MRDD-cs (Ours) 88.78±0.22 88.68±0.18 95.97±0.56 96.15±0.88

∆ SOTA +4.59 +4.58 +4.7 5.57

Table 1. Classification results (%) on E-FMNIST and COIL-
20 datasets. Bold denotes the best results and underline denotes
the second-best. † denotes we set the dimensionality of latent rep-
resentations as 10. All results are reproduced using the official
released code.

incremental relationship is observed between the dimen-
sions of view-specific representations and clustering perfor-
mance.

In contrast, when the dimensions of view-specific repre-
sentations are fixed at 40, consistent representations do not

exhibit a clear pattern of variation. We posit that the overall
performance of our method is primarily influenced by the
expressive capacity of view-consistent representations. Ad-
ditionally, a marginal improvement in overall performance
is noted when the dimensions of view-specific representa-
tions surpass those of view-consistent representations. This
observation suggests a nuanced interplay between the di-
mensions of these representations and their impact on the
performance of downstream tasks.

H. Visualization

We visualize the representations of MRDD-c and
MRDD-cs on the COIL-20, COIL-100, and Office-31
dataset. Fig. 3 indicates that view-consistent representations
can distinguish different samples at a coarse level. How-
ever, after incorporating view-specific representations, the
discriminative ability of the representations is enhanced, es-
pecially evident in the COIL-20 and COIL-100 dataset.

On the other hand, we demonstrate the reconstruction
sampling of the COIL-20 and Office-31 datasets. As de-
picted in Fig. 4 and 5, reconstructing using only consis-
tent representations results in the outline information of ob-
jects, indicating that the model has learned shared informa-
tion among views. Furthermore, when incorporating view-
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Figure 4. Visualization of reconstruction samples of consistency and specificity on the COIL-20 dataset.
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Figure 5. Visualization of reconstruction samples of consistency and specificity on the Office-31 dataset.

specific representations, a significant improvement in re-
construction quality is observed. This suggests that view-
specific representations contain information such as tex-
tures, details, and other nuanced aspects of objects.
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