
Supplementary Material
HIT: Estimating Internal Human Implicit Tissues from the Body Surface

Introduction
In this document, we present additional information
promised in the main manuscript. Please also see the com-
panion Supplemental Video, which illustrates the method
and results more visually, providing additional insight.

In Sec. 3 of the main manuscript, we describe how we
build the HIT dataset containing the segmented MRI vo-
lumes, the extracted surface point clouds, and the corre-
sponding SMPL registrations. Below, in Sec. 1 we detail
how we segment the MRI images and in Sec. 2 we provide
the two-step optimization process to fit SMPL body meshes
to the MRI surface points.

In Sec. 4.2 of the main manuscript, we describe the HIT
network architecture. Here, in Sec. 3, we provide the im-
plementation details.

In Sec. 5.1 of the main manuscript, we extract per-tissue
3D meshes using a multi-label function and visualize the
results. In Sec. 4 we explain how we extract these meshes.

And in Sec. 5 of the main manuscript, we provide re-
sults showing HIT predictions. In Sec. 5 we present further
qualitative results complementing them.

1. Segmentation Process
To segment the data, we use the nnUNet [1] Auto-ML
framework. It automatically configures a U-Net and adapts
the training procedure to the input data. For segmentation
tasks in the medical domain, it has been shown to be state-
of-the-art in many benchmarks and it has been used by oth-
ers in the creation of datasets [2, 4]. We use it for both
Wbones and Wall, which we present next, and for each
model, we use the default settings configured by the Auto-
ML framework.

To segment our dataset, we start by manually annotating
the long bones (femur, tibia, fibula, humerus, ulna, radius
and hips) in a small subset of the dataset (1105 slice images
from 10 subjects). Fig. 1 presents examples of bone annota-
tions. Then we train a segmentation model Wbones, to seg-
ment the bones in the MRI images. The input to the network
is a single-channel DICOM MRI that contains normalized
MRI intensities and the output is a pixel-wise labeled mask
with labels Lbones ∈ [0, 1]. We empirically validate that

Figure 1. Examples of bone predictions from the model trained on
manually annotated long bones.

1K images were enough to obtain a good generalization to
left-out subjects (DICE score: mean 0.91/median 0.95).

In parallel, we use an automatic approach [5] that seg-
ments MRI images into adipose tissue (AT), empty (E),
lean tissue (LT), as well as Visceral Adipose Tissue (VAT),
i.e. fat around organs only in the abdominal region (see
Fig. 2). The segmentations from this method show in gen-
eral good results, but the method has empirically defined
constants that do not generalize well across subjects. Most
failures come from the sequential approach of the automatic
method, first detecting anatomic landmarks and then seg-
menting the tissues. A landmark detection error often leads
to some missing parts in the segmentation. Typical errors at
this stage are shown in Fig. 3.

Screening the full dataset (∼ 442×110 slices) is imprac-
tical, so we focus on a gender-balanced subset (80 subjects,
∼ 8900 images) and curate the generated segmentation ar-
tifacts. For the gender-balanced subset, we also infer the
bone masks with Wbones and merge them with the curated
segmentations to obtain one multi-tissue mask per image.
We then post-process the merged segmentation masks in or-
der to remove small artifacts and split erroneous adipose tis-
sue (AT) segmentations from [5] into subcutaneous adipose
tissue (SAT) and intra-muscular and visceral adipose tissue
(IMVAT).

The obtained merged and post-processed segmentations
were visually inspected and failure cases were corrected
(∼ 150 images from the total of ∼ 8900). Then, with
the curated data, we train a new nnUNet model, Wall, that
takes an MRI image as input and predicts a label for each
pixel corresponding to one of the 5 tissue types (BT, LT,
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Figure 2. Examples of tissue predictions from the Würslin et al. [5]
method.

Figure 3. Typical errors from the Würslin et al. [5] method. Left:
subcutaneous adipose tissue (SAT) here is inaccurately labeled as
visceral adipose tissue (VAT). Right: visceral adipose tissue (VAT)
is labeled as subcutaneous adipose tissue (SAT).

SAT, IMVAT, E). This network effectively replaces the pre-
vious network Wbones and the automatic method [5] which
are not used anymore. We quantitatively evaluate the new
segmentation predictions from Wall on a held-out test set,
obtaining a mean/median DICE score of 0.92/0.98;

To obtain the final segmentations, we use Wall to in-
fer the segmentation masks for all 442 subjects. Fig. 14
and Fig. 15 show examples of final segmentation masks for
a single female and male subject respectively. One final
visual inspection of the obtained segmentations was per-
formed to validate the full dataset of segmentations.

2. Two-step SMPL fit

The subjects of our dataset are lying down during the MRI
scan, which causes the body shape to flatten. This skin com-
pression is highly subject-specific, depending on their body
composition, and SMPL is not able to model it. This section
details the two-step process that we use to obtain SMPL fits
that faithfully capture the shape of the subject as well as the
compression.

For each subject i, we first extract the outer body contour
from the segmented MRI images and, using the metric units
of the volumetric MRI, we create a 3D point-cloud that we
denote Si for skin (see Fig. 5 left). Then, we compute a first

approximation of the subject’s shape and pose parameters
(β1

i ,θ
1
i ) that minimize the distance between the point cloud

and body surface. As the subject’s MRI poses are similar,
we define a reference pose, θMRI , which we use to initialize
fitting and we regularize the estimated pose so that it does
not differ too much from the reference pose. We use the
female or male version of SMPL according to the subject’s
gender and we denote these fitted SMPL meshes S1

i (see
Fig. 5 middle).

Next, we optimize the SMPL mesh vertices to deform
and match the point-cloud Si. Inspired by the literature in
the context of clothing capture [3, 6] we compute meshes
in SMPL parametrization that tightly fit the segmented skin
point clouds, Si. We optimize the new vertices locations,
bound with Laplacian regularisation [6], and denote the re-
sulting free form meshes F1

i . In Fig. 5 we show an example
of an input MRI point-cloud Si and the obtained meshes
S1
i and F1

i . It is worth noting, that while visually similar,
the volumes of the meshes S1

i and F1
i can be very different.

Fig. 4 shows the volume disagreement between S1
i and F1

i

for the 442 subjects. This difference reveals that their cur-
rent relative deformation includes other variations than the
one solely created by the MRI table compression.

To overcome this problem, we start by computing the
volume of the mesh F1

i , which we denote V 0
i . As this mesh

is a tight fit to the point cloud, it approximates accurately the
actual volume of the subject. Next, from the point-cloud Si,
we now only consider the subset of points that are less af-
fected by the table compression, i.e. those for which the nor-
mal vector is pointing in the same direction as the normal
vector of the table, nT. Effectively, we weight the contri-
bution of each point sp ∈ Si with w(sp,np) = σ(np · nT)
where σ is the sigmoid function. In Fig. 7 we show the ef-
fect of this weight on a SMPL mesh. Then, we compute a
new SMPL mesh Si and its parameters (βi,θi) that match
the weighted vertices with the additional volume constraint
||V 0

i − Vi||L2, where Vi is the volume of Si. This enforces
Si to have a consistent volume with the MRI observation.
In Fig. 6 we show the difference between the computed pa-
rameters β1

i and βi, showing that the volume-preserving
constraint effectively affects the computed body shape. The
last step is to compute a deformed mesh Fi that is consis-
tent with the new SMPL mesh Si. To this end, we recom-
pute the free-vertex optimization starting from Si to obtain
a new tight fit Fi. In Fig. 8 we show further results of the
obtained SMPL meshes. These meshes allow us to com-
pute the compression displacements dcomp between the Si

and Fi vertices. An animated illustration of this displace-
ment can be seen in the accompanying video.

As SMPL can not model the stomach compression ob-
served in the dataset, this goal two-step approach goal is
crutial to get SMPL β values for each subject that actually
match their body volume.



Figure 4. Volume differences between the naive SMPL body fit
and the free-vertices version.

Figure 5. Initial fit to the MRI skin point-cloud. Left: point-cloud
Si extracted from the MRI. Middle: SMPL model fit S1

i . Right:
Free-vertex fit F1

i .

Figure 6. Boxplot of the shape coefficients difference between the
S1
i and the volume preserving Si for the 442 subjects.

Figure 7. SMPL mesh vertices color-coded with the computed
weights w(sp,np). Vertices affected by the compression have a
low weight, whereas vertices far from the MRI table have a high
weight. These will be used to compute Si.

Figure 8. Examples of the obtained fit results. Left: point-cloud Si

extracted from the MRI. Middle: Volume preserving SMPL model
fit Si. Right: Free-vertex fit Fi.



3. Network Implementation Details

The HIT modules, described in Fig. 5 of the main docu-
ment, define three networks: namely B, W and C. In addi-
tion, to predict the tissues inside the body in the canonical
space, T is defined. All four networks are Multi Layer Per-
ceptrons (MLP) with softplus activation functions. Next, we
detail their architectures.

3.1. B MLP

The architecture of the network B is shown in Fig. 9. This
network is used for converting a point from theshaped space
into the canonical space. This is critical to enable learning
of the implicit tissues in a single canonical representation
given many training subjects of different shapes. B takes as
input the shaped points xβ and the shape parameters β and
it regresses a 3D offset dβ. By applying this offset to the
input point, the corresponding canonical point is obtained.

Figure 9. The network B.

3.2. W MLP

The architecture of the network W is shown in Fig. 10. W
takes as input a point in the canonical space xc and regresses
its skinning weights. The skinning weights are defined with
respect to the 24 parts of the SMPL body model.

Figure 10. The network W.

3.3. C MLP

The architecture of the network C is shown in Fig. 11. This
network is important for undoing the effects of the table
compression on the body. C takes as input shaped point xβ ,
a shape parameter β and regresses a 3D offset dcomp. By
applying this offset to the corresponding point xm in the
compressed space, a point in the posed space is obtained.

Figure 11. The network C.

3.4. T MLP

The architecture of the network T is shown in Fig. 12. This
network defines the implicit tissue classification at the heart
of HIT. T takes as input a point in the canonical space xc,
it encodes it using positional encoding, then regresses its 4-
tissues probabilities. From these probabilities, the predicted
tissue is obtained.

Figure 12. The network T .



4. Multi-Tissue mesh extraction

A classical approach to visualize the occupancy of an im-
plicit shape is to extract the mesh at a given level set of
the implicit surface. Modeling occupancy as a multi-class
classification problem has the advantage that we can ex-
tract meshes for each class that avoid overlap or inter-
penetrations of predictions. However, for a given class,
class scores do not directly yield the continuous occupancy
function that is required for level-set extraction.

Thus, given one tissue, our goal is to define a function to
apply to the per-class probabilities with the following pro-
perties:
1. If class k has the highest probability, the function should

yield an occupancy value > 0.5.
2. If class k does not have the highest probability, the func-

tion should yield an occupancy value < 0.5.
3. If class k has the highest probability, but is equal to an-

other class, the function should yield an occupancy value
= 0.5. This case defines the boundary between two or
more tissues, which will be extracted by the level-set
method.
For a point in the canonical space xc, let {pi}i∈[1,C] with

pi ∈ [0, 1] be the probabilities of each of the C = 4 classes
(
∑C

i=0 pi = 1). For a tissue k, we define the function lk as:

lk({pi}) =
pk

pk +max(pj)
∀j!=k

(1)

which fulfills the desired properties. We can then pass
lk({pi}) to a marching cube algorithm to extract the k-th
tissue mesh surface, and get tissue volumes that match the
predicted occupancy.

The volumes displayed in Fig. 1, 7, 8, and 9 of the main
manuscript, as well as the volumes in Fig. 18 were extracted
using this technique.

5. Tissue prediction evaluation

5.1. Learned displacement fields visualization

HIT learns two volumetric displacement fields: dβ gener-
alizing the SMPL shape space to R3, and dx

comp accounting
for the MRI table compression. Fig. 13 shows 2D slices
of these fields at the hip level (tissue contours are shown).
The field dβ computed for the shape component associated
with weight (Fig. 13 left) shows a radial structure, which
is consistent with the SMPL shape space. The field dx

comp
(Fig. 13 right) shows the displacements from compressed to
uncompressed shape. Note how the central part experiences
the most compression in the outwards direction, while the
lateral parts have a milder, but lateral displacement. This
is coherent on how the body shape is affected by the MRI
table.

Figure 13. Slices of the learned volumetric displacement fields.
Left: Shape field dβ . Right: Compression field dx

comp. The arrows
are colored from dark blue to red proportionally to the 3D field
absolute value at each point.

5.2. Slice prediction

To complement Fig. 6 of the main manuscript, we present
Fig. 16 and Fig. 17 with more examples of per-slice predic-
tions on left-out subjects.

5.3. Volumetric prediction

To complement Fig. 7 of the main manuscript, in Fig. 18 we
show more volumetric predictions on the left-out subjects.
Each tissue’s mesh is extracted in the canonical pose given
the subject’s shape β, then posed to the target pose θ.

In Fig. 16 right column lines 9 to 11, we see that empty
tissue is predicted inside the thigh. We conjecture this hap-
pens due to the root finding algorithm initialization, which
rigs a query point to the closest SMPL skin vertex. In
the cases where the SMPL fit mesh has self-penetration at
the thigh level, which can happen when the legs are com-
pressed together, the points in the intersection get rigged to
the wrong leg. As a result, the occupancy is queried outside
the body, leading to an empty prediction.

5.4. Comparison with OSSO

Finally, we compare the inferred bone volume with OSSO,
we consider the GT point clouds of the bones in the test set
and compute their distance to the predictions of OSSO and
HIT. Fig. 19 reports the results in which the HIT predictions
are systematically closer to GT than OSSO predictions.

Figure 19. Comparison between OSSO and HIT bone predictions.



Figure 14. Example segmentation masks of a female subject



Figure 15. Example segmentation masks of a male subject



Figure 16. Transverse slices (female): (left) GT tissues, (middle) HIT predictions, (right) accuracy (green correct, red otherwise).

Figure 17. Transverse slices (male): (left) GT tissues, (middle) HIT predictions, (right) accuracy (green correct, red otherwise).



Figure 18. Volumetric tissue predictions for males (left column) and females (right column). From left to right: SMPL fit Si (gray), HIT
LT prediction, GT LT, HIT SAT prediction, GT SAT.
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