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Supplementary Material

In this document, we provide more details on the used
CAD sequence representation (Section (1)), the experimen-
tal setup (Section (2)), and the evaluation (Section (3)).

1. CAD Sequence Representation Details

In this section, further details on the CAD sequence rep-
resentation are provided. Table 1 provides an overview
of the tokens and their value ranges within the CAD
sequence representation C. Each extrusion sequence is
composed of 11 tokens specified in the following order:
{d+, d−, τx, τy, τz, θ, ϕ, γ, σ, β, ee}. On the other hand,
a sketch sequence can be defined by a variable number
of tokens and follows the hierarchical structure mentioned
in [11]. As described in Section 3 of the main paper, a
sketch sequence consists of curves represented by a se-
quence of 2D point coordinates (px, py). Each curve type is
formulated using the following parameters:
• Line: Start and End point.
• Arc: Start, Mid, and End point.
• Circle: Center and top-most point.
Following [10], apart from the non-numerical
tokens {ec, el, ef , es, β, ee, cls, end, pad}, all the other
tokens in the CAD sequence C are quantized to 8 bits. No-
tably, the first 11 classes are reserved for the non-numerical
tokens resulting in a total of dt = 266 (= 28 + 11)
classes. Post quantization, each one dimensional token
is augmented into two dimensions with a pad token. An
example of a CAD sequence representation is depicted in
Figure 1.

2. Additional Details on Experiments

In this section, further details on the experimental procedure
are provided.

2.1. Data Preprocessing Details

During preprocessing, each sketch element (faces, loops,
and curves) is reordered from the original sequence order.
We follow the approach of [10], in which sketch elements
are reordered according to their bounding box bottom-left
position in ascending order. Furthermore, curves are ori-
ented in a counter-clockwise direction as in [10]. Similar
to [10], at most 10 extrusions, are considered for our exper-
iments, resulting in a maximum CAD sequence length of
nts = 273. Given the variable number of extrusions within
a CAD sequence C, padding tokens (pad, pad) are appended
at the end of the sequences during training for batch pro-

Sequence
Type

Token
Type

Token
Flags

Token
Value Description

pad 11 0 Padding Token
cls 0 1 Start Token
end 0 1 End Token
es 0 2 End Sketch
ef 0 3 End Face
el 0 4 End Loop
ec 0 5 End Curve

(px, py) 0 J11 ..266K2 Coordinates

Extrusion
Sequence

d+ 1 J11 ..266K Extrusion Distance Towards
Sketch Plane Normal

d− 1 J11 ..266K Extrusion Distance Opposite
Sketch Plane Normal

τx 2 J11 ..266K
Sketch Plane Originτy 3 J11 ..266K

τz 4 J11 ..266K
θ 5 J11 ..266K

Sketch Plane Orientationϕ 6 J11 ..266K
γ 7 J11 ..266K
σ 8 J11 ..266K Sketch Scaling Factor
β 9 {7, 8, 9, 10} Boolean (New, Cut, Join, Intersect)
ee 10 6 End Extrude

Table 1. Description of different tokens used in our CAD language
representation.

cessing. This ensures that every sequence in a batch has a
length of 273.

2.2. Training Details

The AdamW [6] optimizer is used during training with a
learning rate of 0.001. Additionally, an ExponentialLR
scheduler is applied to adjust the learning rate during train-
ing, with a decay factor of γ = 0.999. The dropout rate is
set to 0.1. For the LFA [4] k-NN feature aggregation, the
number of neighbors is set to 4. In the first two multi-modal
transformer blocks, cross-attention is not used between the
CAD sequence and point embedding. This design choice
is made to prioritize the learning of the intra-modality rela-
tionship in early layers. The training time is approximately
6 days for 150 epochs.

2.3. More on Design History Evaluation Metrics

In the main paper, F1 scores on the extrusions and curve
types are reported as a measure of the quality of the pre-
dicted CAD sequences. To compute the F1 scores, the po-
sitions of the End Sketch (es) and End Extrude (ee) tokens
are initially identified for each ground truth and predicted
CAD sequence. This allows us to divide each sequence
into a list of sketches and extrusions. The extrusion F1
score is computed on the numbers of ground truth and pre-
dicted extrusion sequences. To compute the F1 scores for
each curve type, the procedure described in Algorithm 1
is used. In this algorithm, the loops of the ground truth
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Figure 1. Example of a CAD Sequence Representation. The top and middle panels show the 8-bit quantization process of sketch and
extrusion parameters respectively. The bottom panel depicts the construction of the sequence from the different tokens.

and predicted sketches of the same step are matched us-
ing the match entity list function described in Algorithm 2.
The match entity list function employs a Hungarian match-
ing [5] to establish the correspondences between two lists of
loops. The cost associated with matching two loops is de-
fined as the sum of the Euclidean distances between their re-
spective bounding box bottom-left and top-right corners. A
similar matching strategy is extended for the curves within
the matched loops. Finally, the list of matched curve pairs
from all the sketches is used to compute the curve type F1
scores.
Parameter accuracy introduced in [10] is omitted in our

work. This is because the CAD sequence representation in
DeepCAD [10] differs significantly from ours, particularly
in the curve parameterization. Attempting to transform pre-
dictions from one representation to another will propagate
prediction errors, resulting in an unfair comparison.
For evaluating the CAD reconstruction (obtained by Open-
cascade [1]), the Chamfer Distance (CD) [3] is computed.
This is achieved by uniformly sampling 8192 points from
the predicted and ground truth reconstructed CAD models.
To ensure scale-invariance in CD computation, the models
are normalized within a unit bounding box. Note that the
CD can only be computed if the predicted sequence leads to



Algorithm 1: calculate metrics
Data: Sg, Sp

// List of ground-truth and predicted sketches.
Result: Recall, Primitve, F1 for curves.

1 n gt← length(Sg)
2 n pred← length(Sp)
3 n max← max(n gt, n pred)
// Over or under-prediction of sketches.

4 if n gt ̸= n pred then
5 Append None to Sg or Sp until their lengths

become n max.
// List of ground truth and predicted curve types.

6 y true← []
7 y pred← []
8 for i← 1 to n max do

// Match loops in the sketch.
9 loop pair← match entity list(

Sg[i].loopList, Sp[i].loopList )
// Match curves in the matched loop pairs.

10 for (lg, lp) in loop pair do
// Get pairs of ground truth and predicted

curves from matched loops.
11 (cg, cp)← match entity list(

lg .curveList, lp.curveList )
12 append curve type(cg) in y true
13 append curve type(cp) in y pred

14 recall← multiclass recall(y true,y pred)
15 precision←

multiclass precision(y true,y pred)
16 f1← multiclass f1(y true,y pred)
17 return recall, precision, f1

a valid CAD model.

3. Additional Evaluation Details
In this section, more results from the different experiments
are shown.
3.1. Model Parameters Comparison
Table 2 shows the number of parameters required for each
of the networks presented in the main paper. CAD-SIGNet
has the lowest number of parameters compared to other
baselines.

Model #Parameters
DeepCAD [10]+PointNet++ [7] 7.4M
SkexGen [11] + PointNet++ [7] 18.7M
HNC [12] + PointNet++ [7] 58.4M
CAD-SIGNet (Ours) 6.1M

Table 2. Total number of parameters of CAD-SIGNet compared
to different baseline models.

Algorithm 2: match entity list
Data: eg, ep
// List of ground-truth and predicted entities of

the same sketch index. Entity can be a loop or a
curve.

Result: Matched Curve Pair
1 n gt← length(eg)
2 n pred← length(ep)
3 n max← max(n gt, n pred)
// Over or under-prediction of entities.

4 if n gt ̸= n pred then
5 Append None to eg or ep until their lengths

become n max.
// Hungarian matching cost matrix.

6 cost← []
7 for i← 1 to n gt do
8 for j ← 1 to n pred do
9 if eg[i] and ep[i] is not None then

10 cost[i][j]=bbox distance(eg[i], ep[j])

11 else
12 cost[i][j]=∞

13 matched entity pair=hungarian matching(cost)
14 return matched entity pair

3.2. More Details on Design History Recovery

Table 3 shows supplementary results for the baseline Deep-
CAD [10] and various versions of CAD-SIGNet as men-
tioned in the ablation study in Section 5 of the main pa-
per. The precision and recall scores used to compute the F1
scores are also included.
In the first and second row of Table 3, we provide the results
of DeepCAD [10] with two distinct point cloud encoders:
the first with PointNet++ [7], and the second using LFA [4]
modules used in CAD-SIGNet. The transition to LFA [4]
modules from PointNet++ [7] leads to a noticeable decline
in recall, precision, and F1 scores for DeepCAD [10]. In
CAD-SIGNet without the Layer-wise CA, the point embed-
ding from the last LFA layer are used for cross-attention
in the multi-modal transformer blocks. This modification
leads to a drastic drop in performance. In contrast, our re-
tained model, which leverages Layer-wise CA, outperforms
both the baseline DeepCAD [10] and CAD-SIGNet without
Layer-wise CA. Additionally, emphasizing the importance
of SGA and Hybrid Sampling, we observe improvements in
recall, precision, and F1 scores, especially for arcs and cir-
cles.
Figure 4 shows some examples of predicted sketch in-
stances and the corresponding sketches compared to the
ground truth ones. Sample 1 from this figure shows that
a correct sketch instance prediction has led to the correct



Model Line Arc Circle Extrusion
Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

DeepCAD [10] + PointNet++ [7] 69.86 72.40 68.37 12.53 15.21 12.89 59.61 61.95 58.82 81.74 94.87 86.88
DeepCAD [10] + LFA [4] 66.26 71.09 65.04 4.07 6.19 4.41 47.45 50.49 46.76 79.63 92.48 82.90
Ours w/o Hybrid Samp. 76.49 80.12 75.36 26.90 31.50 27.45 71.53 71.78 69.83 93.98 95.55 92.97
Ours w/o SGA 77.07 82.13 76.93 26.12 31.39 26.89 67.1 69.08 66.58 94.17 94.7 92.5
Ours w/o Layer-wise CA 56.63 71.07 56.99 0.73 1.37 0.800 18.34 26.07 19.97 84.81 92.96 84.53
CAD-SIGNet (Ours) 77.76 81.35 77.31 27.67 33.01 28.65 72.07 72.22 70.36 94.26 94.93 92.72

Table 3. Recall, Precision, and F1 scores for the baseline and ablated CAD-SIGNet for lines, arcs, circles, and extrusions. The results are
on DeepCAD [10] dataset.

sketch prediction and hence the final predicted CAD model
matches the ground truth. In samples 2 and 3, the initial
sketch instance is correctly predicted but the correspond-
ing sketches do not match the ground truth ones. However,
in these examples, the network can still predict a CAD re-
construction similar in shape to the ground truth. Sample 4
shows that despite an incorrect sketch instance prediction,
the final predicted CAD model has the same shape as the
ground truth. Sample 5 shows an example in which the cor-
rect sketch instance was identified but the network was un-
able to predict the corresponding sketch sequence. Finally,
sample 6 shows that the network sometimes fails to capture
some details from the input point cloud.
Figure 5 and 6 showcase more visual results of the re-
constructed CAD models from DeepCAD [10] and CAD-
SIGNet on the DeepCAD [10] and CC3D [2] datasets, re-
spectively. The top panel of both figures shows that CAD-
SIGNet achieves better performance than DeepCAD [10],
even for models containing higher curve counts. The bot-
tom panel showcases invalid models of both DeepCAD [10]
and CAD-SIGNet. We observe that the invalid outputs gen-
erated by CAD-SIGNet are due to syntax errors in the pre-
dictions such as a line or an arc with the same start and end
point.
Figure 7 displays several qualitative results for the ablated
versions of CAD-SIGNet. From those samples, it can be ob-
served that the retained model consistently outperforms its
ablated versions (i.e. discarding layer-wise CA, SGA, and
hybrid sampling).

3.3. Auto-Completion from User Input Details

As outlined in Section 5.2 of the main paper, Skexgen [11]
and HNC [12] are used as baselines for the conditional auto-
completion task. As both were not originally designed for
conditional auto-completion from point clouds, their train-
ing strategy had to be adapted. For SkexGen [11], Point-
Net++ [7] is used to predict 10 pretrained codebooks from
the input point cloud. In the case of HNC [12], the con-
trollable CAD model generation network is retrained with
modifications. In addition to the initial sketch and extru-
sion sequence, we incorporate the full point cloud as input.
PointNet++ [7] is used to learn a latent embedding from the
input point cloud. The resulting point cloud embedding was

then appended to the CAD sequence embedding and passed
to the code-tree generator to predict the codes. The gener-
ated codes along with the CAD sequence and point cloud
embedding are fed to the sketch and extrusion decoder to
generate the CAD sequence. Teacher forcing [9] strategy
is used during training along with cross-entropy loss. The
input CAD sequence is masked from the ground truth CAD
sequence during the loss calculation.
During conditional auto-completion inference of CAD-
SIGNet, HNC [12], SkexGen [11], the initial ground truth
sketch and extrusion sequence along with the input point
cloud are provided. The subsequent CAD sequence is au-
toregressively generated until the end token is predicted.
It is important to highlight that the CAD sequence represen-
tation in HNC [12] and SkexGen [11] uses 6-bit quantiza-
tion while as our representation uses 8-bit quantization. The
different quantization schemes lead to different user inputs.
Hence, the results reported in Table 4 of the main paper
were considering the ratio of CD distances with respect to
the user input, rather than CD.

3.4. Performance on Complex Models
The complexity of models that CAD-SIGNet can handle de-
pends on the training dataset. We consider two defining at-
tributes for complexity: the number of extrusions and the
total number of curves in the sketches within a CAD model.
The DeepCAD dataset [10] which offers the required anno-
tations for CAD-SIGNet includes models with at most 10
extrusions and 44 curves. Figure 2 shows the variation of
the median CD w.r.t. the number of extrusions and the total
number of curves per CAD model. Unlike DeepCAD [10],
the complexity of the input model has minor impact on the
performance of CAD-SIGNet.

3.5. Impact of Point cloud Quality

The cross-dataset evaluation on the CC3D dataset [2] in
Section 5.3 aims at assessing the ability of CAD-SIGNet
to reconstruct CAD models from point clouds that contain
realistic scanning artifacts such as noise and self-occlusion.
Furthermore, Figure 3 shows some qualitative results from
DeepCAD [10] dataset when a part of the input point cloud
is missing. The top rows show the input point cloud with the
missing points highlighted in red while the middle and bot-
tom rows display the corresponding prediction from CAD-



Figure 2. Comparison of median CD for reconstructed CAD models by CAD-SIGNet and DeepCAD [10] w.r.t. to the number of extrusions
(left) and total number of curves (right) per CAD model.
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Figure 3. Performance of CAD-SIGNet under varying degrees of input point cloud occlusion. The percentage of missing points is indicated
above each result.

SIGNet and ground truth. We can observe that when a small
portion of the point cloud is missing, CAD-SIGNet man-
ages to recover a plausible solution. However, if a large por-
tion of the input point cloud is missing, then CAD-SIGNet
fails to capture the overall structure of the CAD model.

3.6. Comparison with Point2Cyl

In this section, we compare CAD-SIGNet with
Point2Cyl [8], another method addressing the 3D re-
verse engineering problem from point clouds. Figure 8
shows some qualitative results between Point2Cyl [8] and
CAD-SIGNet in terms of the output sketches and 3D recon-
structions given an input point cloud. Notably, the shapes
predicted by Point2Cyl [8] closely resemble the ground
truth shapes. However, there are some major differences
between our work and Point2Cyl [8]. Firstly, the sketches
in Point2Cyl [8] are predicted as signed distance functions,
and a marching square algorithm is applied to deduce the
sketch. Such a strategy leads to a non-parametric form
of the sketches. Secondly, the final model is a 3D mesh.
This implies that the output model cannot be directly
edited using CAD software, hence limiting the practical
applications of this method. Finally, reconstructing the final
model requires manual choice for the boolean operations
between the different extrusion cylinders.
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Figure 4. Sketch Instances. Ground truth (green) and predicted (red) sketch instances along with their corresponding sketches.
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Figure 5. More qualitative results of the reconstructed CAD models from the input point clouds on the DeepCAD [10] dataset. The top
panel shows examples of varying complexity. The bottom panel showcases invalid models, observed in both DeepCAD [10] and CAD-
SIGNet.
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Figure 6. More qualitative results of the reconstructed CAD models from the CAD sequences predicted from input scans on CC3D [2]
dataset. Both CAD-SIGNet and DeepCAD [10] are trained on the DeepCAD [10] dataset. The top panel shows examples of varying
complexity. The bottom panel showcases invalid models, observed in both DeepCAD [10] and CAD-SIGNet.
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Figure 7. Reconstructed CAD models from predicted CAD sequences on DeepCAD [10] dataset for ablated versions of CAD-SIGNet.
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Figure 8. Qualitative results from Point2Cyl [8] and CAD-SIGNet. The output sketches and 3D reconstructions are provided here. The
output from Poin2Cyl is not parametric while CAD-SIGNet outputs parametric CAD model.
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