
In this supplement, we provide more details about our
datasets (Appendix A), episode generation procedure (Ap-
pendix B), analysis & experiment details (Appendix C), train-
ing plots and finetuning results (Appendix C), and agent
failure case analysis (Appendix E).

A. Dataset details

A.1. HSSD dataset construction details

We show the process for constructing HSSD in Figure 1.
Starting with the glTF format assets representing the 211
scenes from Floorplanner, we use node information of the
underlying asset IDs to decompose and extract over 18K
unique 3D assets representing furniture and other objects.
The architectural layout for each of the 211 scenes is what
remains after this extraction from each scene. The object
assets and the architecture are then compressed as described
in the main paper.

The 3D assets are used to create a 3D model database
which we clean and annotate with semantic information. We
use a UI that allows us to select multiple 3D models and tag
them with semantic attributes such as WordNet synset, room
that the object is typically found in, and on what side the
object typically attaches to other objects (bottom vs vertical
vs top). For the semantic categorization step, we start with
tags that are provided by Floorplanner and refine and correct
the categories. The interface allows annotators to pull up a
3D view of each object and closely examine it. The 3D view
also provides an interface for semantically annotating the up
and front orientation of each object so we have semantically
aligned objects. We find most objects already have consistent
alignment, and only re-align objects that are not consistently
aligned (typically wall objects).

In addition, we also mark whether the 3D asset represents
multiple objects. For 3D assets that are marked as being com-
posed of multiple objects, we follow the process depicted
in Figure 2 to decompose the 3D asset into multiple objects.
We first obtain an automatic segmentation using connected
component analysis, and then have users manually “paint”
and “label” the objects. Due to the clean geometry, we can
obtain clean segmentations. Our interface allows for easy
marking of object parts, displaying of the bounding box of
annotated objects, copying of labels, undo/redo operations
etc. The annotated objects are algorithmically extracted,
deduplicated and aligned.

At the scene level, we also identify floater objects and
exterior doors. Floater objects are objects that are outside
of the scenes, and should not be part of the scene. We
remove such objects. For ObjectNav experiments, we also
remove interior doors but keep exterior doors (to prevent the
agents from wandering outside). In addition, we also remove
animate objects (animals and humans) from our scenes for
all ObjectNav experiments.

A.2. HSSD dataset statistics

Figure 3 shows a word cloud visualization of categories in
HSSD, with the text font size representing the total count
of unique object instances in each category. We see that
our dataset contains a diverse set of object categories. As
described in the main paper, we annotate the objects in HSSD
using a taxonomy based on WordNet, but extended to include
additional common object categories. Figure 4 shows a sub-
tree of this WordNetCO category hierarchy, focusing on
lamp objects. The breadth and fine-grained nature of the
taxonomy allows for future experiments with embodied AI
agents tackling scenarios requiring perception of objects
closer to an open vocabulary setting.

The object co-occurrence analysis in the main paper is
on the basis of a set of 28 common object types that are
shared between ProcTHOR [2], HSSD, and HM3DSem [9].
The complete list of these categories is: alarm_clock, bed,
book, bottle, bowl, chair, chest_of_drawers, couch, cush-
ion, drinkware, fridge, laptop, microwave, picture, plate,
potted_plant, shelves, shoes, sink, stool, table, table_lamp,
toaster, toilet, trashcan, tv, vase, washer_dryer.

We plot the size distribution (measured by the diagonal
length of the bounding box in meters) of the 28 object cat-
egories in Figure 5. We see that the HSSD objects exhibit
realistic sizes, with some categories having fairly narrow
size distributions (e.g., shoes) and some having fairly broad
distributions (e.g., pictures, shelves and beds).

A.3. HSSD qualitative visualizations

In Figure 6 we show example object instances for a number
of categories from HSSD. We see that HSSD exhibits a rich
diversity of object geometry, apperance, and physical sizes
across many categories. This diversity is beneficial for exper-
iments studying generalization of perception capabilities for
embodied AI agents. These objects also populate the scenes
in HSSD in a way that produces more realistic environments.
We show first-person views in Figure 7 and top-down views
in Figure 8. Overall, we see that HSSD scenes exhibit more
realistic architectural layouts than ProcTHOR [2], and come
closer to real-world scans from HM3DSem [9] in terms of
the richness and density of objects populating each room.

A.4. AI2-THOR datasets in Habitat

To construct rigorous experiments comparing between the
HSSD and ProcTHOR [2] datasets, we port and optimize
ProcTHOR assets in the same fashion as HSSD so that they
can be efficiently used in the Habitat simulator platform [7].
We built on top of the AI2-THOR Unity interface [5] to ex-
port all Unity prefab objects and scene assets to glTF format
using UnityGLTF1. We also export a corresponding JSON-
format metadata file with each asset to record information

1github.com/KhronosGroup/UnityGLTF

https://github.com/KhronosGroup/UnityGLTF

decompose annotate

+
& compress

3D scenes (211) 3D models (>18K)

• WordNet synset
• hasMultipleObjects
• foundIn
• attachmentSide

decompose
& dedup

3D arch (211) align

……

…

up

front

semantic

categorization

Figure 1. Overview of HSSD construction pipeline. We first decompose the original 211 3D scenes into more than 18K individual
per-object 3D models, and architectural geometry for each scene. The per-object models are then annotated with a variety of semantics
including WordNet synsets. The objects are also decomposed and semantically aligned so that they have a consistent up and front orientation.

Annotate

Decompose +
dedup + align

Multi-object 3D asset

6x 6x

6x

6x 6x 6x1x

1x

Object decomposition

Segment

Automatic segmentation

Figure 2. Illustration of decomposition process for multi-object assets. We create independent object assets for arrangements such as the
dining table seen at the left. The process involves an automatic segmentation, manual annotation to group segments into individual objects,
and finally an algorithmic decomposition, deduplication, and alignment of all extracted object instances.

such as the semantic category label, position and orientation
of the object. For iTHOR [5], RoboTHOR [1] and Architec-
THOR, we filter the structural objects in the scene so that
we leave only architectural objects (walls, floors, ceilings).
We then zero-center all exported objects, and re-orient the
objects to standardized object-centric coordinates. Subse-
quently, we can use the position and orientation information
to correctly place the objects wherever they are observed in
the original scene. Note that we re-use assets across scenes
to reduce on-disk and in-memory size. Since ProcTHOR [2]
has procedurally generated architectures, we construct the
geometry of the architecture with the specified textures from
the ProcTHOR scene layout specification JSON format, and
create a glTF asset for each scene architecture. All doors

are exported using the AI2-THOR Unity interface in opened
state to allow for navigation between rooms. This porting of
the AI-2THOR assets to Habitat format enables us to take
advantage of the faster simulation speeds provided by Habi-
tat [8] and run experiments with any combination of iTHOR,
RobotTHOR, ArchitectTHOR, and ProcTHOR scenes.

A.5. Why not use 3D-FRONT?

3D-FRONT [3] is a popular dataset for 3D scene generation
research. However, the scenes are sparsely populated. Due
to limited rights in releasing the original 3D assets for the
scenes, 3D models in the scenes for the 3D-FRONT dataset
are replaced with 3D models from the 3D-FUTURE [4]
dataset. This limited the presence of object in rooms to a

Figure 3. Word cloud of object categories in HSSD. Font sizes
indicate unique instance count per category. The HSSD contains
a rich variety of categories, with many instances especially for
categories that exhibit diversity in the real world (wall art, rugs etc.)

Lamp
• Floor lamp (171)
• Ceiling lamp

• Chandelier (111)
• Pendant lamp (227)
• Track lighting (8)

• Table lamp (305)
• Wall lamp (135)
• Garden lighting

• Pathway lighting (13)
• String lights (12)

Figure 4. Lamp object category hierarchy in HSSD. Our category
hierarchy leverages an augmented taxonomy of WordNet synsets
that we call WordNetCO (for WordNet Common Objects). The
figure shows synsets that we introduced in blue. The count of object
instances within each synset is indicated by the number, and an
example instance is shown for select synsets.

subset of room categories (e.g., living rooms, dining rooms,
bedrooms) and left other rooms (e.g., kitchens, bathrooms,
and closets) empty. There is also a limited number of place-
ments of smaller objects on top of larger furniture objects
(other than un-decomposed multi-object combinations), and
no wall decoration objects. Another impact of using re-
placed assets is that there are scenes with objects that are
interpenetrating each other. All of these factors make the 3D-
FUTURE dataset much less well-suited for semantic indoor
navigation where we expect the scenes to be well-populated,
and objects to be realistically placed.

B. Episode generation details
Viewpoint sampling. In each scene, for each indoor goal
object instance (e.g., bed, chair, couch), we first sample a
grid of prospective viewpoints around the object and then

0 1 2 3 4 5 6
Bounding box diagonal length (m)

drinkware
alarm_clock

bottle
book

shoes
plate
bowl
vase

toaster
trashcan

laptop
microwave

cushion
table_lamp

sink
stool

picture
toilet

washer_dryer
chest_of_drawers

chair
tv

table
shelves

fridge
couch

bed
C

at
eg

or
y

Figure 5. Distributions of physical sizes for the 28 category
set from HSSD. Distributions are on the diagonal length of the
bounding box for each instance within the category. Categories are
sorted by average diagonal length from top (smallest) to bottom
(largest). The HSSD objects are scaled to have realistic physical
sizes. Shelves, tables, pictures, couches have a wide range of
physical sizes. In contrast, categories such as alarm clocks, bottles,
plates, and shows have much narrower physical size distributions.

reject viewpoints that do not have a navigable position below
them, those that are too far (distance > 1m) from the object’s
bounding box, and those that are outdoors or outside the
house (in HSSD scenes). After snapping the valid viewpoints
from the previous step to a nearby navigable position, we
remove all the viewpoints snapped to small (radius < 1.5m)
navigable islands (e.g., found on tabletops, counters, beds).
Next, we spawn the agents on these valid viewing positions
(facing the object) and compute the object’s visibility at these
positions by measuring the frame coverage, i.e. the fraction
of image pixels belonging to object. We reject positions from
where frame coverage is less than 0.1%. After getting valid
viewpoints, we uniformly sample random starting positions
(one per episode) across the scene such that: 1) the geodesic
distance between each starting position and the goal instance
is at least 1 meter but less than 30 meters; and 2) a fraction of
the nearly straight-line episodes (ratio of geodesic distance
to Euclidean distance < 1.05) are rejected.

We present sample episode visualizations for two goal
TV instances in HSSD and ProcTHOR through a top-down
map in Figure 11. The bounding box of the goal TV instance

bed

shelving

chair

table

table lamp

floor lamp

wall lamp

fan

toiletry

radio

mirror

clock

Figure 6. Example objects from several categories. The HSSD-200 dataset contains a broad variety of object categories, each with
a diverse set of object instances within each category. Note the variety of lamp categories (table lamps, floor lamps, wall lamps), each
exhibiting diversity of object instances with different physical sizes, geometry, and fine-grained appearance.

ProcTHOR [2] HSSD HM3DSem [9]

Figure 7. Qualitative comparison of first-person views from ProcTHOR [2], HSSD and HM3DSem [9]. The HSSD scenes exhibit a
richer diversity of objects and are more realistically populated than the ProcTHOR scenes. Images are rendered using Blender’s Eevee
renderer with all parameters at default settings. The ProcTHOR scenes and HSSD scenes are shaded with ambient occlusion and screen-space
reflections, while the HM3DSem scenes are rendered without shading.

ProcTHOR [2] HSSD HM3DSem [9]

Figure 8. Top-down views of scenes from ProcTHOR [2], HSSD and HM3DSem [9]. Compared to ProcTHOR, the HSSD scenes
exhibit more realistic architectural layouts with corridors between rooms, non-rectilinear wall outlines and densely populated rooms. These
characteristics bring HSSD closer to real-world environments as captured in the HM3DSem dataset.

is outlined with a black box and the viewpoints are shown in
green (valid), blue (invalid due to being far from the object),
and yellow (invalid due to being unnavigable) pixels. The
orange pixels denote the episode starting positions.

Note that HSSD also has scene regions outside the house

(e.g., backyards, gardens, balconies). We restrict all episodes
to indoor regions as we focus on indoor-only navigation.
Both the goal object and episode start position are required
to be inside the house, and doors leading to the exterior are
closed. A handful of scenes do not have a clear distinction

Figure 9. 3D-FRONT [3] scenes are sparsely populated. Al-
gorithmic object replacement was used to place object instances,
and some room types are unfortunately left empty (e.g., kitchens,
bathrooms, closets). This is due to limited rights to release the
original 3D assets used in the scenes.

Figure 10. Object inter-penetrations in the 3D-FRONT dataset.
The algorithmic object replacement unfortunately produces cases
such as the ones shown here (see red circles). We show the scene
with original object textures (left) and semantically colored by
object category (right).

between indoors and outdoors and are therefore excluded
from episode generation. For this reason, we generate train-
ing episodes for 122 scenes out of the 125 scenes in the
training set.

The inherent scene size distribution differences between
ProcTHOR, HSSD, and HM3D are also reflected in the
distributions of episode geodesic distance that emerge in
episodes generated from each of these scene datasets. See
Figure 12 for a comparison. ProcTHOR has a high number
of (easier) low geodesic distance episodes (due to a good
number of small 1-3 room houses), with an exponential
decay in the number of episodes as the distance increases (in
bigger houses with more rooms). On the other hand, HSSD
and HM3D have more similar distributions for both train and
validation episode datasets.

ProcTHOR HSSD

Figure 11. ObjectNav episode generation visualization. We show
generated episode goal and starting positions for TVs in example
scenes from HSSD and ProcTHOR. The goal object is outlined
with a black box, the valid viewpoints are shown in green, and the
episode start positions are shown with orange points.

Train Validation

0 5 10 15 20 25 30
Geodesic distance

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

ProcTHOR
HFSD
HM3DSem

0 5 10 15 20 25 30
Geodesic distance

0.00

0.05

0.10

0.15

0.20

De
ns

ity

ProcTHOR
HFSD
HM3DSem

Figure 12. Geodesic distance distribution of episode datasets.
We compare the distribution of geodesic distances across the
episode datasets of ProcTHOR [2], HSSD, and HM3DSem [9].
Note how the differences in scene size distributions lead to signifi-
cantly higher numbers of (easier) low geodesic distance episodes in
ProcTHOR compared to fairly similar distributions between HSSD
and HM3DSem.

C. Analysis & experiment details

Hierarchical clustering algorithm details. Given the object
co-occurrence matrix C we obtain as described in the main
paper, we first compute the dissimilarity matrix D = 1− C.
Then, we compute the distance for each unique pair D(i, j),
constructing an n ∗ (n− 1)/2-dimensional vector. This vec-
tor is then used for hierarchical clustering with the farthest
point algorithm to compute the distance between clusters
and output a linkage matrix. We use SciPy’s hierarchical
clustering implementation to do this and form flat clusters.
Cutting into flat cluster requires a distance threshold (maxi-
mum distance between clusters). We use a threshold t = 0.8
to compute the similarity scores reported in the main paper.

ProcTHOR-122. We disentangle scene dataset scale and
scene dataset realism by creating a version of the ProcTHOR-
10K dataset [2] that matches the scale of HSSD, as measured
by number of scenes and navigable area. We sample 122
scenes from ProcTHOR-10K, matching the navigable area

0 250 500 750 1000 1250 1500
Indoor navigable area

0

1

2

3

4

5

6

7

De
ns

ity
1e 3

ProcTHOR-122
HFSD-122

Figure 13. Navigable area distributions for comparable scale
datasets. We prepare a 122-scene subset of ProcTHOR-10K [2]
that matches HSSD’s training set in scale in terms of number of
scenes and the navigable area distribution. We refer to this scene
dataset as ProcTHOR-122.

distribution of HSSD’s training dataset as closely as possi-
ble. The navigable area distributions of these scale-matched
scene datasets are in Figure 13.

HSSD-60 and ProcTHOR-60. To measure the impact of
scene dataset scale, we also create variants of HSSD and
ProcTHOR-122 with 60 scenes. We do this by randomly
sampling 60 scenes out of 122. We refer to these scene
dataset variants as HSSD-60 and ProcTHOR-60.

D. Training plots and finetuning results

Training and evaluation plots. In the main paper we re-
ported zero-shot performance of agents trained on different
datasets in ??. Here, we present the agent training plots as
well as validation set performance plots during training (on
the same dataset’s validation set). Figure 14 shows these
plots. All agents reach validation set convergence by ap-
proximately 200M steps of experience. The results in the
main paper use the agent checkpoint with highest valida-
tion set SPL from each training run. We also plot zero-shot
performance of agents on HM3DSem and MP3D validation
datasets across number of training steps in Figure 15. These
plots show that overall HSSD-pretrained agents generalize
better to real-world 3D scanned scenes than ProcTHOR and
iTHOR-pretrained agents.

Finetuning results. In addition to the zero shot general-
ization experiments which were the focus of our work, we
also present experiments with agents finetuned on the tar-
get dataset. The agents are pre-trained on variants of the
HSSD and ProcTHOR training datasets and then finetuned

Figure 14. Agent training plots. We provide plots of agent perfor-
mance during training on each dataset’s training set and validation
set. These plots correspond to the zero-shot agents presented in ??
of the main paper. Each agent is trained on the indicated dataset
(iTHOR, ProcTHOR, HSSD, HM3DSem, and MP3D) to conver-
gence. The plots show results from three independent training runs.
Validation set performance for all agents saturates by approximately
200M steps of experience. Note that agents differ on when they
reach convergence, with iTHOR agents doing so significantly faster
likely due to the simplicity of the one-room scenes in the dataset.

on the HM3DSem training set. Specifically, for each agent,
we finetune the agent checkpoint that has the best zero-shot
performance on the HM3DSem validation set in terms of the
SPL metric. See Table 1 for a summary of the results. In the
table we compare these finetuned agents against the perfor-
mance of an agent trained directly on HM3DSem. We find
that all agents converge to similar levels of performance after
finetuning, irrespective of the pre-training dataset. Perfor-
mance in terms of the success metric ranges between 47.85
and 48.48, while the combined success and efficiency perfor-
mance as measured by SPL ranges between 22.16 and 23.1,
with HSSD agents retaining a lead over ProcTHOR agents.
This trend is not surprising as finetuning on the target dataset
is expected to reduce performance gaps due to differences
between the original training datasets.

E. Agent failure case analysis

Inspired by Ramrakhya et al. [6], we analyze common fail-
ure cases when evaluating the HSSD-trained agent on the
HM3DSem [9] val set (after fine-tuning on the HM3DSem
train set). We randomly sample 100 val set episodes where
the agent failed to succeed and analyze the modes of failure
by classifying the agent’s performance into the following
failure cases:

Figure 15. Zero-shot evaluation on HM3DSem and MP3D.
We plot zero-shot success and SPL on HM3DSem (top row) and
MP3D (bottom row) validation scenes for agents pretrained on each
synthetic scene dataset across number of training steps. Each line
summarizes performance for agent checkpoints from three indepen-
dent training runs evaluated zero-shot on HM3DSem and MP3D.
We see that HSSD-pretrained agents perform better throughout
compared to both ProcTHOR and iTHOR-pretrained agents.

Pre-training dataset Success ↑ SPL ↑
HM3DSem 48.10 22.16

ProcTHOR-60 47.85 22.37
HSSD-60 48.13 22.76

ProcTHOR-122 48.48 22.79
HSSD-122 48.23 23.10
ProcTHOR-10K 48.32 21.80

Table 1. Finetuned agent performance. Performance of HSSD
and ProcTHOR pre-trained agents on HM3DSem validation set
scenes after finetuning on the HM3DSem training set scenes. All
agents converge to comparable performance, though HSSD agents
retain a small lead in combined success and efficiency (SPL).

Exploration failure (33%): agent does not explore some
part of the house and therefore fails to come across the goal
object. A common cause is excessive looping behavior in
one part of the house, i.e. repeatedly visiting the same region.
Incorrect prediction (19%): agent stops in front of an object
that is not the goal (e.g. stopping in front of a green toy when
the goal was a plant).
Inter-floor navigation (14%): agent is spawned on a floor
that does not have any goal instances. It needs to change

Exploration failure

Incorrect prediction

Inter-floor navigation

Recognition failure

Early stopping

Missing annotation

Semantic confusion

Failure (%)
0 10 20 30 40

6%

6%

8%

13%

14%

19%

33%

Figure 16. Failure case analysis. Breakdown of 100 randomly
selected failure cases for agent pre-trained on HSSD, fine-tuned on
the HM3DSem [9] train set, and evaluated on the HM3DSem val
set. We see that agents are most likely to fail due to inefficacy in
exploring the scene (i.e. exploration failures).

floors to find the object.
Recognition failure (13%): agent sees the object clearly
when exploring, but does not navigate to it.
Early stopping (8%): agent finds the object but stops a few
centimeters too far from it.
Missing annotation (6%): agent navigates to a valid goal
object that unfortunately has not been annotated in the
HM3DSem scene, causing the episode to be deemed un-
successful.
Semantic confusion (6%): agent navigates to an incorrect
but semantically similar object category (e.g. navigating to
an armchair instead of a sofa).

We plot the corresponding distribution of failure cases
in Figure 16. A major cause of failure is inability to effec-
tively explore the scene. Agents are likely to show better
performance if annotations are improved and if objects can
be found on the same floor.

References
[1] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kem-

bhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador, Dustin
Schwenk, Eli VanderBilt, Matthew Wallingford, Luca Weihs,
Mark Yatskar, and Ali Farhadi. RoboTHOR: An open
simulation-to-real embodied AI platform. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3164–3174, 2020. 2

[2] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Kiana Ehsani, Jordi Salvador, Winson Han, Eric Kolve, Anirud-
dha Kembhavi, and Roozbeh Mottaghi. ProcTHOR: Large-
scale embodied AI using procedural generation. In Advances
in Neural Information Processing Systems, 2022. 1, 2, 5, 6, 7,
8

[3] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Cao Li,
Zengqi Xun, Chengyue Sun, Yiyun Fei, Yu Zheng, Ying Li,

et al. 3D-FRONT: 3D Furnished Rooms with layOuts and
semaNTics. arXiv preprint arXiv:2011.09127, 2020. 2, 7

[4] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang
Zhao, Steve Maybank, and Dacheng Tao. 3D-Future: 3D Fur-
niture shape with TextURE. arXiv preprint arXiv:2009.09633,
2020. 2

[5] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An interactive 3D
environment for visual AI. arXiv preprint arXiv:1712.05474,
2017. 1, 2

[6] Ram Ramrakhya, Dhruv Batra, Erik Wijmans, and Abhishek
Das. Pirlnav: Pretraining with imitation and rl finetuning for
objectnav. arXiv preprint arXiv:2301.07302, 2023. 8

[7] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili
Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,
Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform
for embodied AI research. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9339–9347,
2019. 1

[8] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech
Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra
Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training
home assistants to rearrange their Habitat. Advances in neural
information processing systems, 2021. 2

[9] Karmesh Yadav, Ram Ramrakhya, Santhosh Kumar Ramakr-
ishnan, Theo Gervet, John Turner, Aaron Gokaslan, Noah
Maestre, Angel Xuan Chang, Dhruv Batra, Manolis Savva,
et al. Habitat-Matterport 3D semantics dataset. arXiv preprint
arXiv:2210.05633, 2022. 1, 5, 6, 7, 8, 9

