
Supplementary Materials
A. Datasets
We use 6 diverse long-tailed datasets in our experiments: CIFAR10 and CIFAR100[20], LSUN [51], Flowers [32], iNatural-
ist2019 [11], and AnimalFaces [44] to encompass a wide range of image domains, dataset sizes, resolutions, and imbalanced
ratios ⇢. In the following, we provide a detailed description of each dataset.
• CIFAR10/100: The original CIFAR10 and CIFAR100 datasets consist of 50,000 training images at 32 ⇥ 32 resolution

with an equal number of images present in 10 and 100 classes, respectively. An imbalanced version of these datasets
referred to as CIFAR10/100-LT, is widely used in the long-tail recognition literature [49]. We follow [5] to generate an
exponentially long-tailed version with an imbalance ratio ⇢ = {50, 100} for CIFAR10-LT and ⇢ = 100 for CIFAR100-LT.
When calculating few-shot metrics, we follow [4] and take classes 6-9 in CIFAR10-LT and 70-99 in CIFAR100-LT as the
few-shot subset in our evaluation.

• LSUN: Following [36, 39], we select a challenging subset of 5 classes in the LSUN Scene dataset and keep 50,000
images from the training set (250,000 in total): dining room, conference room, bedroom, living room,
and kitchen. We make this subset long-tailed with an imbalance ratio ⇢ = 1000 and refer to it as LSUN5-LT. We take
the kitchen class with only 50 training samples as the few-shot subset.

• Flowers: Oxford Flowers dataset contains 102 different flower categories. We first combine the train and validation set
images to access a larger dataset for the purpose of training and evaluation. This results in a total of 7370 images across
all classes. This dataset is naturally imbalanced with 234 and 34 images being present in the category with the most and
least number of images (⇢ ⇡ 7), respectively. To increase the skewness and learning difficulty, we further increase the
imbalance ratio to ⇢ = 100. This reduces the number of training images in the tail classes to only 2 images. We use
128 ⇥ 128 resolution in the experiments and refer to this as Flowers-LT. For the few-shot reference, we take the 52 classes
with the least number of training samples (classes 51-102), containing from 23 to 2 images.

• iNaturalist2019: The 2019 version of the iNaturalist dataset is a large-scale fine-grained dataset containing 1,010 species
from nature. This dataset naturally follows a long-tailed distribution and we keep the training instances in each class intact.
We use the training set at the 64 ⇥ 64 resolution in the experiments. The training set of iNaturalist2019 contains a total of
268,243 images. We take the 210 classes with the fewest training instances for the few-shot evaluation (classes 801-1010).

• AnimalFaces: This dataset contains the faces of 20 different animal categories (including humans). We set the resolution
of the images to 64 ⇥ 64. The most populated categories in the dataset are dog and cat classes with 388 and 160
images, respectively. The remaining 18 classes are roughly balanced containing from 118 to 100 images. This indicates an
imbalance ratio close to 4 (⇢ ⇡ 4). To make it more suitable for the long-tail setup, we artificially increase the imbalance
ratio to ⇢ = 25, increasing the training difficulty. We refer to this as AnimalFaces-LT in our experiments. For few-shot
evaluation, we take the 10 least frequent categories (classes 11-20).
Across all datasets, we sort image categories in the decreasing order of their size, i.e., class index 0 containing the most

training images and so on.

B. Effects of Weighted Sampling
Long-tailed datasets suffer from severe class imbalance problems that hinder learning, especially for the tail classes. To
mitigate this issue, one common technique in the long-tail recognition literature [49] is to adjust the sampling during training
by assigning higher weights to the tail classes, i.e., oversampling them. With recent advancements in data augmentation for
GAN training [17, 53, 57], it is reasonable to speculate that oversampling tail instances might improve training calibration.
To investigate this, we choose a simple yet effective weighted sampling (WS) method to compare against traditional random
sampling methods by assigning a weight wc for the samples from class c 2 {1, . . . , C},

wc = n
��

c
, % = ⇢

(1��) (3)

where nc is the number of samples in class c, ⇢ = maxc{nc}/ minc{nc} is the imbalance ratio, and � 2 [0, 1] is a
hyperparameter that damps the sampling imbalance. We illustrate this in Fig. 7 for CIFAR100-LT with ⇢ = 100. When
� = 0, the sampling follows the original data distribution. As � increases, the effective imbalance ratio % between the classes
decreases. At � = 1, head and tail classes have the same probability of being drawn during training, i.e. % = 1. While WS



might help with more calibrated training, it does not promote knowledge sharing among classes.
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Figure 7. WS CIFAR100-LT (⇢ = 100). When � = 0, the sampling follows the original data distribution. As � increases, the effective
imbalance ratio % between the classes decreases. At � = 1, head and tail classes have the same probability of being drawn during training,
i.e. % = 1.

Table. 6 presents a comparison of results obtained from the StyleGAN2-ADA baseline and the use of weighted sampling
(WS). Our experiments indicate that WS improves the FID and KID metrics compared to the baseline. However, it does not
enhance tail performance in terms of FID-FS and KID-FS, indicating that balancing alone is insufficient when there are very
limited training examples in the tail. We also noticed that adding weighted sampling will boost overfitting. Fig. 8 illustrates
the training FID-FS curves for the WS methods with different � values, compared against our method and the baseline.
For both CIFAR10-LT (⇢ = 100) and CIFAR100-LT (⇢ = 100) datasets, WS methods exhibit overfitting behavior. As �

increases, this becomes more pronounced, and training becomes unstable when � = 1 across both datasets. While WS did
not show any improvements for CIFAR100-LT, we found it to demonstrate relatively better performance than the baseline
at the early stages of training before overfitting sets in. While our experiments on the role of WS in training cGANs in the
long-tail setup are informative, we believe that reaching a comprehensive conclusion requires further analysis.

Table 6. Effect of weighted-sampling (WS) when training on long-tailed datasets.

Dataset CIFAR10-LT CIFAR100-LT

Metrics FID # FID-FS # KID # KID-FS # FID # FID-FS # KID # KID-FS #
⇥1000 ⇥1000

StyleGAN2-ADA [17] 9.0 24.2 4.0 9.7 10.8 24.9 5.1 9.3
+ GSR[36] 8.4 24.3 3.9 11.8 11.1 25.0 5.0 8.2
+ UTLO (Ours) 6.8 13.4 2.8 5.4 9.9 21.8 4.6 7.5
+ WS (� = 0.25) 7.1 22.2 2.6 8.1 13.7 28.4 7.2 10.5
+ WS (� = 0.35) 7.6 22.1 2.9 8.0 14.1 28.0 7.0 9.4
+ WS (� = 0.5) 8.0 23.4 2.5 8.0 14.9 32.1 7.3 10.4

C. Ablation Study
Choice of Intermediate Low Resolution. In our proposed method, one of the hyperparameter choices is to select an
intermediate low resolution resuc for unconditional training. All layers with equal or lower resolution than resuc do not have
access to class-conditional information. An unconditional GAN objective is added over the images and/or features at resuc.
To study the impact of resuc, we conducted an ablation study on the AnimalFaces-LT dataset, which contains images at
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Figure 8. FID-FS curves for CIFAR10-LT and CIFAR100-LT datasets when using weighted sampling (WS) with different � values. We
observe that WS leads to overfitting, and as � increases, this becomes more pronounced. Training becomes unstable when � = 1 for both
datasets.

64 ⇥ 64. Table. 7 presents the results for selecting resuc from resolutions lower than 64 ⇥ 64: 8 ⇥ 8, 16 ⇥ 16, and 32 ⇥ 32.
For all resolutions, we set the unconditional objective weight � = 1.

Studying the results obtained in Table. 7, we oberve that resolutions of 8 ⇥ 8 and 16 achieve relatively close performance.
On the other hand, the performance degrades when layers up to 32 ⇥ 32 are trained unconditionally. This is anticipated as
the AnimalFaces-LT is at 64 ⇥ 64, leaving only one layer to learn the class-conditional information which is shown to be
insufficient.

To better understand the role of intermediate low resolution selected during training, we show the unconditional low-res
images x̂l from the intermediate layers (see Fig.3 in main paper) for different ablated resolutions in Fig. 9. The low-res
images are upsampled to the same size for better visual comparison. As resuc increases, more details are introduced to the
unconditionally trained intermediate images. For the AnimalFaces-LT dataset, resolution 32 ⇥ 32 already includes fine and
definite details, making it challenging to generate (tail) class-specific changes in a single layer before reaching the output
resolution of 64 ⇥ 64. We demonstrate this in the bottom of Fig. 9 the final class-conditional images at 64 ⇥ 64 resolution
from the tail class bear are shown. When resuc is higher, the final output changes minimally from the lower-resolution
images x̂l. On the other hand, at lower resuc, the level of change is higher.

Table 7. Ablation study on the choice of intermediate low resolution for unconditional training resuc for AnimalFaces-LT dataset (64⇥64).

Unconditional Low Resolution (resuc) FID # FID-FS # KID # KID-FS #
⇥1000

8⇥ 8 26.2 48.4 12.6 19.6
16⇥ 16 27.5 50.3 13.7 20.8
32⇥ 32 38.0 64.9 23.3 34.3

Contribution of Unconditional Training Objective at Low Resolutions. Another hyperparameter introduced by our
method is the choice of unconditional training objective weight (�) relative to the conditional one (see Eq. 2&3 in the main
paper). Since the results for 8 ⇥ 8 and 16 ⇥ 16 resolutions were comparable in Table. 7, we conducted an ablation study on
� values for both resolutions. Table. 8 shows the results of the ablation study on the contribution of different values for the
unconditional training objective (� = 0.01, 0.1, 1, 10). We also considered the case when no unconditional training is added
(� = 0), and only the lower resolution layers  resuc do not receive class-conditional information, i.e., they are passed wz as
the style vector instead of wz,y (see Figure 3 in the main paper). We find that � = 1 achieves the best performance for both



Figure 9. Visual comparison of the choice of different unconditional low-resolution (resuc) in our proposed framework on the AnimalFaces-
LT dataset. As (resuc) increases, the unconditional low-resolution image x̂l entails finer features (top). The low-resolution images are then
used to generate class-conditional images at output resolution (x̂) from the tail class bear (bottom). The images are upsampled to the
same size for better comparison. (best viewed in color)

resolutions. When � is too small (0.01) or too large (10), it disrupts the balance between the conditional and unconditional
objectives, leading to performance degradation.

Table 8. Ablation on the choice of unconditional training objective weight (�) at different low-resolutions resuc for AnimalFaces-LT
dataset.

resuc Unconditional Training Objective Weight (�) FID # FID-FS # KID # KID-FS #
⇥1000

8⇥ 8

No Unconditional Training (� = 0) 64.0 94.2 35.8 45.4
0.01 61.0 99.9 32.4 50.0
0.1 28.6 50.0 13.6 19.8
1 26.2 48.4 12.6 19.6
10 111.6 145.8 54.6 66.4

16⇥ 16

No Unconditional Training (� = 0) 58.3 87.7 28.5 41.8
0.01 64.7 88.5 30.7 35.9
0.1 31.4 53.3 15.7 22.6
1 27.5 50.3 13.7 20.8
10 59.9 111.0 30.0 53.8

Need for unconditional layers in the discriminator (Luc) and end-to-end joint training with both unconditional and
conditional objectives. In addition to the unconditional layers in the generator, we have found that unconditional layers
should be explicitly present in the discriminator. Table 9 provides the ablation results where the unconditional layers are re-
moved from UTLO (i.e., w/o Luc). This shows significantly worse performance, indicating the need for explicit unconditional
discriminator on the low resolution.

Further, to demonstrate how the proposed method differs from other training strategies that promote coarse-to-fine learn-
ing, e.g. progressive training [41], we carefully design experiments to compare our proposed method against progressive
training. We follow the progressive strategy in StyleGAN-XL [41], starting with training a stem at a low resolution. After
training the stem, the training of higher-resolution layers is followed. For a more comprehensive analysis, we experimented
with two stems: an unconditional stem and a conditional one.



Firstly, we observed the conditional stem exhibited mode collapse early in the training. For training the subsequent
higher-resolution layers, we picked the best stem before the mode collapse. This training strategy yielded considerably worse
results as shown in Table 9 (last row). Conversely, the unconditional low-resolution stem did not experience mode collapse.
Indeed, Table 9 shows that using unconditional stem (second-to-last row) improved over the baseline. However, it was still
significantly worse than UTLO, showing the benefit of our design: end-to-end joint training with both unconditional and
conditional objectives.

Table 9

Method FID # FID-FS # KID # KID-FS #
⇥1000

StyleGAN2-ADA [17] 51.4 87.1 24.7 35.9
+ UTLO (Ours) 26.2 48.4 12.6 19.6
+ UTLO w/o Luc 63.75 87.35 35.08 35.78
+ Progressive [41]: Uncond. Stem 37.73 64.57 21.71 31.53
+ Progressive [41]: Cond. Stem 98.35 150.86 73.97 102.20

D. Knowledge Sharing Analysis
In Figure 5 of the main paper, we presented conditionally generated images from our method trained on the CIFAR10-
LT (⇢ = 100) dataset, demonstrating knowledge sharing among the head and tail categories using a shared unconditional
low-resolution image. To quantify the similarity among images that share the same input latent code but have different
class-condition labels, we use the Learned Perceptual Image Patch Similarity (LPIPS) metric [54]. We first generate 1,000
random noises from different seeds. Given each sampled noise z, we generate images from all 10 classes of the CIFAR10-LT
(⇢ = 100) dataset, c 2 {0, . . . , 9}, including both head and tail classes. We then calculate the LPIPS among all class pairs.
Table. 10 reports the average LPIPS score obtained from the baselines and our proposed method.

Table 10. Comparing Avg. LPIPS among all class pairs. Given a fixed noise input, we generate images from all classes (including both
head and tail). We then quantify the similarities in terms of LPIPS metric among all class pairs and compare our method against baselines.

Methods StyleGAN2-ADA [17] + GSR [36] + UTLO (Ours)
Avg. LPIPS ⇥1000 12.31 12.37 11.20

The results show that generated images from all classes (head and tail) in UTLO, which promotes knowledge sharing,
exhibit higher similarities (lower LPIPS) compared to the baselines that do not incorporate means of knowledge-sharing. To
investigate which head and tail classes share the most patch similarities, we plotted the average LPIPS for individual class
pairs in Fig. 10. As somewhat expected, It is observed that tail classes such as truck, ship, and frog share the highest
similarities with head classes automobile, airplane, and bird, respectively. This is intuitive as these class pairs have
common attributes such as blue/green backgrounds, wheels, etc. Visual examples of this can also be found in Figure 5 of the
main paper and Fig. 13.

E. Long-tail v.s. Limited Data Regime
Previous work on training GANs under limited data [17, 42, 57] has shown that the quality of generated images degrades as
the dataset size decreases. In long-tailed datasets, on the other hand, there is an additional challenge of data imbalance across
classes. To better understand their individual effects on training cGANs, we devise a setup in which we create a balanced
dataset with the same size as the long-tail one. More concretely, given a long-tailed dataset with a total of n training images
(across head and tail classes), we create a new balanced dataset of size n in which each class c 2 1, . . . , C contains n/C

images.



Figure 10. Normalized LPIPS among all class pairs of CIFAR10-LT dataset using our proposed method. We generate images from all
classes using the same latent codes and calculate the LPIPS among all class pairs. The obtained results are normalized from 0 to 1.We
observe that tail classes such as truck, ship, and frog share the highest similarities with head classes automobile, airplane, and
bird, respectively. The lower LPIPS values indicate higher similarities between the generated images. (best viewed in color)

Table 11. Effect of (balanced) limited data v.s. long-tailed data in training cGANs. This table compares the quality of the generated images
for different dataset sizes and distributions on CIFAR10 dataset. Baseline StyleGAN2-ADA is used without GSR or the proposed UTLO.

# Train Images Data Distribution FID # FID-FS # KID # KID-FS #
⇥1000

50,000 Full Dataset (Balanced) 2.5 3.3 0.4 0.4

13,996 Long-tail (⇢ = 50) 6.5 21.4 2.4 9.0
Limited Data (Balanced) 3.9 4.6 1.0 0.8

12,406 Long-tail (⇢ = 100) 9.0 24.2 4.0 9.7
Limited Data (Balanced) 4.5 5.7 1.3 1.3

To analyze the effects of dataset size v.s. the distribution of the classes in the dataset, we trained the baseline StyleGAN2-
ADA [17] on different setups of CIFAR10. Table. 11 compares the quality of the generated images in terms of GAN
metrics for each setup. We observe that in the balanced setup, the model achieves better scores compared to the long-tail
setup. Moreover, we see that the performance gap between the full and few-shot metrics is noticeably larger in the long-tail
setup. We suspect that the performance gap between the full and few-shot metrics in the balanced setup might be due to the
difficulty of the selected few-shot classes or the size of the real data used in calculating the metric. A smaller gap between
the KID and KID-FS, which is unbiased in design, supports the latter.

F. Implementation Details, and Choice of Hyperparameters
The baselines used in our experiments cover different designs in generator, discriminator, and data augmentation pipelines.
We provide the implementation details in the following.



• StyleGAN2 with Adaptive Data Augmentation (ADA) [17]: We use the official PyTorch implementation * in our
experiments. On CIFAR-LT datasets, we used the cifar configuration. For the rest of the datasets, we use the auto
configuration. Adding transitional training [42], we used the official implementation † provided by the authors.

• Projected GAN (PGAN) [40]: We use the projected discriminator with both the FastGAN [23] and StyelGAN2 [18]
generator backbones in our experiments. For the data augmentation, Differentiable Augmentation (DA) [57] is used. The
official PyTorch implementation is provided by the authors ‡. Default hyperparameters are used. Note, the authors of
PGAN provided a liter version of FastGAN which gets to similar performance as the original FastGAN. We use the lite
version in our experiments.

• Group Spectral Regularization (GSR) [36]: We added the GSR implementation provided by the authors § to both the
StyleGAN2+ADA and PGAN+DA repositories. We used the default choice of hyperparameters in all experiments.

• Noisy Twins [37]: We use the official implementation provided by the authors ¶ and also added it to the PGAN+DA
repository. We used the default choice of hyperparameters in all experiments.

• Unconditional Training at Lower Resolutions (UTLO): We used the default training configuration of the baselines. Our
method introduces two new hyperparameters: the intermediate low resolution and �, the weight between the conditional
and unconditional loss terms (see ablation in Sec. C). In general, we found intermediate low resolution of 8 ⇥ 8 and
� = {0.1, 1} to be generally applicable across all datasets and resolutions, attaining competitive performance.
For the reported results in the paper, we use 8 ⇥ 8 as the intermediate low-resolution across all datasets, except for the
Flowers-LT dataset where 16 ⇥ 16 resolution shows slightly better performance. Choosing �, on CIFAR100-LT and
Flowers-LT which contain very few samples in the tail classes, we found � = 10 performing the best. On CIFAR10-LT, �

is set to 0.1. Across the rest of the datasets, we use � = 1.

G. Additional Evaluation Results
Naturally Imbalanced Datasets: iNaturalist2019 and Flowers-LT We evaluate our proposed method on datasets that are
naturally imbalanced. This covers the iNaturalist2019 and Flowers-LT datasets which we train at 64 ⇥ 64 and 128 ⇥ 128
resolutions, respectively. Different from previous experiments, we use ProjectedGAN (StyleGAN2) + DA [40] as the baseline
here. Table. 12 shows the quantitative evaluation results. The results across both datasets consolidate our findings and validate
the effectiveness of our proposed method.

Additionally, we show visual examples from the training and generated images from two different tail classes in the
iNaturalist2019 dataset in Fig. 11. It can be seen that the images learned from our method (UTLO) tend to generate more
diverse and higher-quality images for the tail classes. Generated images from the tail classes of the Flowers-LT dataset are
shown in Fig. 15.

Table 12. Comparing the proposed method against the baseline across two naturally imbalanced datasets: Flowers-LT (128⇥128 resolution)
and iNaturalist2019 (64⇥ 64 resolution).

Dataset Flowers-LT iNaturalist2019

Metrics FID # FID-FS # KID # KID-FS # FID # FID-FS # KID # KID-FS #
⇥1000 ⇥1000

PGAN (StyleGAN2) + DA [40] 9.8 21.6 2.4 2.9 3.6 11.4 0.53 1.08
+ GSR[36] 8.2 17.9 1.1 1.7 3.5 11.1 0.51 0.99
+ NoisyTwins[37] 6.7 15.3 0.9 1.9 3.0 10.6 0.45 0.72
+ UTLO (Ours) 6.6 15.4 0.9 1.8 2.8 10.1 0.41 0.60

Combining our method with GSR and WS Although we provided a direct comparison of UTLO against GSR [36] and
weighted sampling (WS), they can be integrated with our proposed training framework. In Table. 13, we present quantitative

*https://github.com/NVlabs/stylegan2-ada-pytorch
†https://github.com/mshahbazi72/transitional-cGAN
‡https://github.com/autonomousvision/projected-gan
§https://github.com/val-iisc/gSRGAN
¶https://github.com/val-iisc/NoisyTwins
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Figure 11. Examples of training and generated images contrasting our method against the baseline on two different tail classes of the
iNaturalist2019 dataset at 64⇥ 64 resolution. Each row depicts a tail class.

Table 13. Integrating GSR and weighted sampling (WS) to our proposed method on the AnimalFaces-LT dataset. The obtained results
from adding GR and WS do not show any noticeable improvement over solely using UTLO.

Method FID # FID-FS # KID # KID-FS #
⇥1000

StyleGAN2-ADA 51.4 87.1 24.7 35.9
+ UTLO (Ours) 26.2 48.4 12.6 19.6
+ GSR [36] 39.2 67.2 21.2 32.7
+ UTLO + GSR 26.9 47.8 12.2 19.3
+ NoisyTwins [37] 29.4 50.2 16.7 21.2
+ UTLO + NoisyTwins 26.6 48.1 12.9 19.0
StyleGAN2-ADA + UTLO + WS 27.7 47.4 13.4 18.5

results on AnimalFaces-LT when adding GSR, NoisyTwin, and WS (see Sec. B) to UTLO. We use WS with � = 0.35.
Combining UTLO with regularization methods (GSR and NoisyTwins) and weighted sampling (WS) didn’t show clear
improvements over UTLO alone. However, it resulted in significant improvements over GSR and NoisyTwins individually.

Comparison against Unconditional Training We compare unconditional and conditional training on the AnimalFaces-
LT dataset and present the results in Table. 14. The unconditional model generates samples that follow the training
distribution, which is mainly dominated by head classes. This bias favors the unconditional baseline in terms of the FID and
KID metrics, which do not consider the skewness in the data distribution. We recommend including FID-FS and KID-FS
metrics when evaluating GANs on imbalanced datasets.

H. Additional Visual Comparison
In Fig. 12-16, we provide additional visual examples from our proposed method and compare them against baselines. Fig.
12 presents a comparison of generated images from all classes in the CIFAR10-LT dataset (⇢ = 100). The data imbalance
curve is shown in this figure where there are only 50 training samples present in the rarest tail class truck (top row) while



Table 14. Comparing unconditional and conditional baselines on AnimalFacs-LT dataset. The Unconditional baseline generates samples
that track the training distribution which is mainly dominated by head classes. This favors it in terms of FID and KID metrics, which do
not consider the skewness in the data distribution. We suggest FID-FS and KID-FS metrics should be incorporated when evaluating GANs
over imbalanced datasets.

Method FID # FID-FS # KID # KID-FS #
⇥1000

StyleGAN2-ADA Unconditional 39.4 104.1 17.3 27.6
StyleGAN2-ADA Conditional 51.4 87.1 24.7 35.9

StyleGAN2-ADA Conditional + UTLO (Ours) 26.2 48.4 12.6 19.6

the most populated head class airplane (bottom row) has 5,000 training samples. Fig. 13 shows additional examples of
knowledge sharing from the head to the tail classes in the CIFAR10-LT dataset using our proposed UTLO framework. The
conditional images generated from the head (middle columns) and tail (right columns) classes share and are built on top of
the same low-resolution (unconditional) images (left columns).

Fig. 14 compares the generated images from our proposed method against the baseline across classes with only 5 training
instances (shown in the top-left corner) in the CIFAR100-LT dataset (⇢ = 100). We use StyleGAN2-ADA as the baseline
in the CIFAR100-LT experiments. Further, we present additional visual comparisons of generated images from the rarest
tail classes of the Flowers-LT with only 2 training images (shown in the top-left corner) in Fig. 15. Our proposed approach
enables a diverse set of features, such as backgrounds, colors, poses, and object layouts, to be infused into the tail classes
with very few training images. We use ProjectedGAN (StyleGAN2) + DA as the baseline. Finally, we showcase the
generated images from the 5 tail classes with the least number of training images in the AnimalFaces-LT dataset. While
the diversity of the generated images is limited by the baselines, UTLO learns a more diverse set of images with very few
training images. StyleGAN2-ADA serves as the baseline for the AnimalFaces-LT experiments.

StyleGAN2-ADA + GSR# Train Samples

...5000 2997 50

+ Ours+ Transitional

Figure 12. Qualitative comparison of the generated images from all classes in the CIFAR10-LT dataset (⇢ = 100). There are only 50
training samples present in the rarest tail class truck (top row) while the most populated head class airplane (bottom row) has 5,000
training samples.



Figure 13. Additional examples of knowledge sharing from the head to the tail classes in CIFAR10-LT dataset using our proposed UTLO
framework. The conditional images generated from the head (middle columns) and tail (right columns) classes share and are built on top
of the same low-resolution (unconditional) images (left columns). Low-resolution images (8 × 8) are upsampled to that of CIFAR10- LT
(32 × 32) for improved visualization. (best viewed in color.)

All Training Images

Baseline Baseline + GSR

Baseline + UTLO (Ours)

Figure 14. Comparing the generated images from our proposed method against the baseline across classes with only 5 training instances
in the CIFAR100-LT dataset (⇢ = 100). The baseline used is StyleGAN2-ADA. Training images are shown in the top-left corner.
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Figure 15. Additional visual examples when generating images from the rarest tail classes in the Flowers-LT with only 2 training images.
Our proposed approach allows for a diverse set of features such as backgrounds, colors, poses, object layouts, etc. to be infused into the
tail classes with very few training images. Training images are shown in the top-left corner. ProjectedGAN (StyleGAN2) + DA is used as
the baseline.
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Figure 16. Generated images from 5 tail classes with the least number of training images in the AnimalFaces-LT dataset. While the diversity
of the generated images is limited by baselines, UTLO learns a set of more diverse images with very few training images. StyleGAN2-ADA
is used as the baseline.


