
Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis
Supplementary Material (Appendix)

1. Denosing Diffusion Models
Denoising diffusion models are hierarchical latent variable
models which generate sample through gradually removing
noise from a randomly sampled white noise vector. The
training procedure is comprised of two processes: diffusion
or forward and denoising or backward. Diffusion process
destroy the clean image and convert it to an approximately
pure Gaussian noise during T time steps. The learnable
denoising process then reconstructs the data distribution
from white noise by reversing the diffusion process.

Diffusion Process: The diffusion process [1] can be de-
scribed as a Markov chain, wherein each step of the forward
path is defined by a Gaussian transition kernel:

q(zt|zt−1) = N (zt;αt|t−1zt−1, σ
2
t|t−1I), (1)

where αt|t−1 ∈ R+ governs the extent to which the previ-
ous latent is retained, while σt|t−1 ∈ R+ regulates the mag-
nitude of the added noise. The dimension of the latent vari-
ables z1, ...,zT is the same as that of the data x or z0. An
important property of the forward process is that any desired
step zt can be directly sampled from x using a closed-form
solution, without needing to compute preceding steps:

q(zt|x) = N (zt;αtx, σ
2
t I), (2)

where αt|t−1 = αt/αt−1 and σ2
t|t−1 = σ2

t − α2
t|t−1σ

2
t−1.

The pre-specified hyperparameters αt typically exhibit a
monotonically decreasing pattern from 1 to 0, while σt

monotonically increases from 0 to 1. This pattern leads to a
gradual corruption of the input image by Gaussian noise as
t increases, resulting in q(zT) = N (0, I).

Denoising Process: The true denoising distribution, which
is tractable when conditioned on x [1], can be written:

q(zt−1|zt,x) = N (zt−1;µt→t−1(x, zt), σ
2
t→t−1I),

(3)
where the distribution parameters can be computed as:

σt→t−1 = σt|t−1σt−1/σt

µt→t−1 = (αt|t−1σ
2
t−1/σ

2
t)zt + (αt−1σ

2
t|t−1/σ

2
t)x

(4)

To generate data, the true denoising process can be esti-
mated by a learned denoising distribution pθ(zt−1|zt) :=
q(zt−1|zt, x̂ = ϕθ(zt, t)), where x̂ is predicted from dif-
fused sample zt using a neural network ϕθ. Similar to Eq.
4, pθ(zt−1|zt) can be expressed by the approximation x̂:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σ
2
t→t−1I),

= N (zt−1;µt→t−1(x̂, zt), σ
2
t→t−1I).

(5)

Training Objective: The likelihood function log pθ(x) is
challenging to compute directly for training the model. So,
during training, its evidence lower bound is maximized
(ELBO ≤ log pθ(x)), which can be expressed as:

ELBO = Eq[−
LT︷ ︸︸ ︷

DKL(q(zT |x)||p(zT))
L0︷ ︸︸ ︷

+ log pθ(x|z1)

+

T∑
t=2

−

Lt−1︷ ︸︸ ︷
DKL(q(zt−1|zt,x)||pθ(zt−1|zt) . (6)

Within a well-defined noise scheduling, both L0 and LT

tend to approach approximately 0 and remain constant.
Therefore, for training the diffusion model, it becomes ad-
equate to optimize the Lt−1 term, which is equivalent to
comparing the learnable denoising process with the true
denoising distribution. As both of these distributions are
Gaussian, the expressions for the KL divergences have
closed-form solutions and can be written as follows:

Lt−1 ∝ Eq[||µt→t−1 − µθ(zt, t)||2] = Eq[||x− x̂||2].
(7)

In above formulation, the neural network directly pre-
dicts x̂. However, [1] discovered that optimization becomes
simpler by predicting Gaussian noise instead. Hence, if we
express zt = αtx+ σtϵ, then the neural network ϕθ gener-
ates ϵ̂ = ϕθ(zt, t), resulting in:

x̂ = (1/αt)zt − (σt/αt)ϵ̂. (8)

As demonstrated in [2], using this specific parameteriza-
tion, the final loss is obtained as follows:

Et,x,ϵ[||ϵ− ϵ̂||2] = Et,x,ϵ[||ϵ− ϕθ(αtx+ σtϵ, t)||2. (9)

1

2. Additional Details on Blurring Diffusion
Model

Heat Dissipation as Gaussian Diffusion: The heat dissi-
pation process or blurring [4] can be expressed as a type of
Gaussian diffusion. First, the marginal distribution of any
time step noisy latent zt can be defined as follows:

q(zt|x) = N (zt;Atx, σ
2I), (10)

where At = V DtV
T represents the dissipation or blur-

ring operation. V T contains orthogonal Discrete Cosine
Transform (DCT) basis, while the diagonal matrix Dt =
exp(−Λτt) corresponds to the exponentiation of a weight-
ing matrix for the frequencies Λ. Λ contains squared
frequencies λn,m = −π2(n2/W 2 + m2/H2), where W
and H are the width and height of the image, and n ∈
{0, . . . ,W −1} and m ∈ {0, . . . ,H−1}. According to Eq.
10, any latent state zt is created by introducing a constant
level of noise to a progressively blurred data point. When
we transform the variables using the following transforma-
tions: ft = V T zt and fx = V Tx, the Gaussian diffusion
process can be formulated in frequency space:

q(V T zt|V Tx) = N (V T zt;V
TAtx, σ

2 V T IV)⇔
q(ft|fx) = N (ft;Dtfx, σ

2 I).

(11)

If we define a vector λ containing the diagonal elements of
Λ, we can express dt as exp(−λτt), which corresponds to
the diagonal elements of the matrix Dt. With this reinter-
pretation, the diffusion process in frequency space can be
written as follows:

q(ft|fx) = N (ft;dt ⊙ fx, σ
2I), (12)

where ⊙ denotes elementwise vector multiplication. Eq.
12 shows that the marginal distribution of ft can be de-
composed into individual scalar elements f

(i)
t . Likewise,

the learnable inverse heat dissipation model pθ(ft−1|ft)
can also be decomposed in a fully factorized manner. As
a result, we have the option to describe the heat dissipation
process and its inverse using scalar representations for each
dimension i:

q(f
(i)
t |f (i)

x) = N (f
(i)
t ; d

(i)
t u(i)

x , σ2)⇔

f
(i)
t = d

(i)
t f (i)

x + σϵ,withϵ ∼ N (0, 1).
(13)

Eq. 13 can be identified as a particular case of the standard
Gaussian diffusion process that operates in frequency space,
i.e., f (i)

t = αtf
(i)
x + σtϵ, where αt = d

(i)
t and σt = σ.

What distinguishes this type of diffusion process from the
standard one is the utilization of distinct noise schedules,

denoted as αt and σt, for each scalar element of the latent
variable ft. In other words, the noise applied in this process
exhibits non-isotropic characteristics. It’s worth noting that
while the marginal variance σ is shared across all scalar el-
ements f (i)

t , the specific noise schedules provide individual
adjustments for each element.

In heat dissipation models, the Markov process
q(ft|ft−1) can be defined, corresponding to their chosen
marginal distribution q(ft|fx). By establishing an equiv-
alence with Gaussian diffusion, this process can be effec-
tively described using the following formulation:

q(ft|ft−1) = N (ft;αt|t−1ft−1,σ
2
t|t−1I),

where αt = dt, σ
(i)
t = σ ⇒ αt|t−1 =

dt

dt−1

,

⇒ σ2
t|t−1 = (1− (

dt

dt−1

)2)σ2.

(14)

When dt is designed to have smaller values for higher
frequencies, σt|t−1 will introduce greater noise to the
higher frequencies at each timestep. This results in the heat
dissipation model erasing information from those frequen-
cies more rapidly compared to the standard diffusion pro-
cess.
Inverse Heat Dissipation: Similar to the standard diffusion
model [1], the analytical expression for the true inverse heat
dissipation process is obtained and can be written as fol-
lows:

q(ft−1|ft,fx) = N (ft−1;µt→t−1,σ
2
t→t−1I), (15)

where:

q(ft−1|ft,fx) ∝ q(ft−1|fx)q(ft|ft−1,fx) =

q(ft−1|fx)q(ft|ft−1)⇒ σt→t−1 = σt|t−1σt−1/σt,

µt→t−1 = (αt|t−1σ
2
t−1/σ

2
t)ft + (αt−1σ

2
t|t−1/σ

2
t)fx

(16)

As discussed, the true denoising process can be approxi-
mated using a learned denoising distribution, pθ(ft1 |ft).

3. Algorithms
Algorithms 1 and 2 summarize the training and decoding
procedures of our neural codec.

4. Architecture of Diffusion-based Decoder
Fig. 1 illustrates our diffusion-based decoder design, em-
ploying a U-Net architecture for the diffusion model [1],
incorporating ResNet blocks and self-attention modules.
We’ve employed six units for both encoding and decod-
ing within the U-Net framework. In the encoding path-
way, the channel dimension is determined from the set

MLP MLP MLP MLP MLP MLP MLP MLPMLP MLP MLP MLP MLP

M
D

M
D

M
D

M
D

D
B

D
B

D
B

D
B D
B

R
es

 U
ni

t

R
es

 U
ni

t

A
tte

nt
io

n

MLP

U
B U
B U
B

U
B U
B

U
B

D
B

R
es

 U
ni

t

R
es

 U
ni

t

R
es

 U
ni

t

R
es

 U
ni

t

A
tte

nt
io

n

A
tte

nt
io

n

co
nv

\2

Tc
on

v2
\

Tc
on

v2
\

R
es

 U
ni

t

Upsampling Block (UB)Downsampling Block (DB) Main Decoder (MD)

time embedding

Figure 1. Architect of diffusion-based decoder. W and H correspond to the width and height of the input image, respectively.

Algorithm 1 Training Neural Codec

Sample x ∼dataset
repeat

Sample t ∼ U(0, T)
Sample ϵ ∼ N (0, I)
zt = V αtV

Tx+ V σtV
T ϵ

ỹ ∼ U(Enζ(x)− 0.5, Enζ(x) + 0.5)
x̂t = V (1/αt)(V

T zt − σtV
Tϕθ(zt, t, ỹ))

LDif = ||ϵ− ϕθ(zt, t, ỹ)||2
LT = (1− β)LDif + βdLPIPS(x, x̂t)− λ log pỹ(ỹ)
(ζ, θ) = (ζ, θ)− η∇ζ,θLT (η : Learning Rate)

until converged

{C1 = 64, C2 = 128, C3 = 192, C4 = 256, C5 =
320, C6 = 384}. The decoding process mirrors the encod-
ing process in reverse. The main decoder (MD) comprises
ResNet blocks and transposed convolutions, which serve to
upscale the quantized latent representation ŷ to match the
spatial dimensions of the inputs from the initial 4 U-Net en-
coding units. This setup enables us to introduce condition-
ing by concatenating the output of the main decoder layers
with the input from the corresponding U-Net layer.

The time step t is initially linearly embedded into a vec-
tor with a dimension of 64. Subsequently, the resulting
time embedding te is further processed through MLP lay-
ers, which are responsible for expanding it to align with the

Algorithm 2 Decoding Compressed File

ŷ ⇐ Entropy decoded binary file using entropy model
pŷ(ŷ)
Sample zT ∼ N (0, I)
for t = T, ..., 1 do

ft = V T zt and fϵ̂ = V Tϕθ(zt, t, ŷ)
σt→t−1 = σt|t−1σt−1/σt

µ̂t→t−1 =
αt|t−1σ

2
t−1

σ2
t

ft +
σ2

t|t−1

αt|t−1σ
2
t
(ft − σtfϵ̂)

zt−1 ← V (µ̂t→t−1 + σt→t−1fϵ̂)
end for
Return x̂ = z0

channel size of the corresponding DB/UB layers.

5. Additional Qualitative Comparisons
As shown in Fig. 2, our model tends to generate fewer ar-
tifacts and is capable of decoding images with greater real-
ism compared to both the HiFiC [3] and CDC [5] networks,
even when using a significantly lower bit-rate.

References
[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 2

[2] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan

Figure 2. Additional Visual comparison of our method to the HiFiC and CDC models.

Ho. Variational diffusion models. Advances in neural infor-
mation processing systems, 34:21696–21707, 2021. 1

[3] Fabian Mentzer, George D Toderici, Michael Tschannen, and
Eirikur Agustsson. High-fidelity generative image compres-
sion. Advances in Neural Information Processing Systems,
33:11913–11924, 2020. 3

[4] Severi Rissanen, Markus Heinonen, and Arno Solin. Gener-
ative modelling with inverse heat dissipation. arXiv preprint
arXiv:2206.13397, 2022. 2

[5] Ruihan Yang and Stephan Mandt. Lossy image compres-
sion with conditional diffusion models. arXiv preprint

arXiv:2209.06950, 2022. 3

