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Appendices
In this supplementary material, we provide details omitted
in the main text.
• Appendix A: Model implementation & training details

(cf. §3.3, §3.4, and §4 of the main text).

• Appendix B: Dataset details (cf. §4 of the main text).

• Appendix C: Additional experiments (cf. §4.2 of the main
text).

A. Model implementation & training details
As mentioned in §1 of the main text, we implement DUAL-
VCR on top of MindAct algorithm [4]. We exactly follow
its implementation1 but provide the details for reference.

A.1. DUAL-VCR-enhanced element ranker

MindAct utilizes a small ranking LM to measure the im-
portance of each element et for action prediction. Con-
cretely, at each time step t, the ranking LM takes the ele-
ment’s HTML text tokens het , the task description q, and
the previous actions {a1, a2, · · · , at−1} as input and out-
puts its importance,

set = f(q, het , {a1, a2, · · · , at−1}) (A)

DUAL-VCR aims to expand this ranking LM to integrate
(i) each element’s visual features and textual features and
(ii) both the candidate element and its neighbor elements.
(See Figure 4 of the main text for an illustration.)

Integrating visual and textual features. We first extract
each element’s visual features from the Pix2Struct Vision
Transformer (ViT) [13], pre-trained on webpage screen-
shots. Concretely, Pix2Struct learns rich representations of
webpages by asking to predict an HTML-based parse from
a masked screenshot. We input the whole screenshot It to
Pix2Structbase and apply RoIAlign [8] on its output embed-
dings to obtain the element’s visual features vet based on its

1https://github.com/OSU-NLP-Group/Mind2Web

bounding box. On the HTML document side, we extract the
element’s HTML text het , using the triplet of its ID, HTML
text, and bounding box provided in the HTML document.

Intergrating visual neighbor elements. Based on our
key insight on webpages—web developers tend to arrange
semantically relevant and task-related elements in prox-
imity to each other on the screenshot to enhance user
experiences—we contextualize each element et with its “vi-
sual” neighboring elements Met . We measure the center
points of all elements in the screenshot using their bound-
ing boxes and calculate their pairwise Euclidean distances2.
For each candidate element to be ranked by MindAct, we
search for the closest M elements to form its context jointly.

Aligning visual and textual embedding spaces. After ob-
taining each element’s visual features vet and textual fea-
tures het , we align them in the same embedding space. Fol-
lowing the recent practice of vision-and-language models
(e.g., BLIP-2 [14], LLaVA-1.5 [18]), we apply two linear
projection layers W to map visual features into the tex-
tual embedding space. We then introduce a learnable po-
sitional embedding to (i) pair each projected visual feature
uet with its associated text tokens het and (ii) encode the
relative distance between the candidate element et and its
neighboring elements Met . Concretely, we add the same
positional embedding pet to the candidate element’s (pro-
jected) visual feature uet and textual feature het . Besides,
we sort the neighbors Met based on their spatial distances
from the candidate element et. We then encode the relative
positional embedding pmk

et
(based on the spatial distance

from the candidate) to each neighbor element’s visual fea-
tures umk

et
and corresponding text tokens hmk

et
. We denote

the set of the neighbors’ visual features by UMet
. Similarly,

HMet
and PMet

represent the set of their textual features
and that of their positional embeddings, respectively. These
positionally encoded visual and textual token embeddings
(of the candidate and the neighbor elements) are passed into
the ranking LM f ; the visual features are prepended to the

2https://scikit-learn.org



textual embeddings, serving as soft visual prompts,

set = f(q,Ret , {a1, a2, · · · , at−1}),
Ret = [uet + pet ;UMet

+ PMet
;het + pet ;HMet

+ PMet
]

(B)

Training Details. In training, we only learn the projection
layer W , the positional embeddings P , and the ranking LM
f while keeping the ViT frozen. For the ranking LM, we
use DeBERTabase [9], a small encoder-only LM. We exactly
follow the configuration of MindAct. Specifically, we train
the LM (together with a linear classifier) with a batch size
of 32 and a learning rate of 3e-5 for 5 epochs. The LM
outputs the element’s importance score through a sigmoid
activation function. The score is optimized with a binary
cross-entropy loss, where the ground-truth element serves
as a positive example, and elements randomly sampled from
the webpage are considered negative examples. The LM
is trained on a single Nvidia A6000 48GB GPU. During
inference, we score all candidate elements in the webpage
and select top-K elements for the action predictor.

A.2. DUAL-VCR-enhanced action predictor

Due to the high computational cost of directly passing an
entire HTML document into LLMs, MindAct [4] restricts
its input to only the top-K candidate elements selected from
the ranking LM. Concretely, MindAct combines the se-
lected elements into an HTML snippet Ht and feeds it into
an LLM g, along with the task description q (“Find one-
way flights from New York to Toronto.”) and the previous
actions {a1, a2, · · · , at−1} (“Type New York in the From
box”). At each time step t, the objective is to predict an ac-
tion at, composing of the target element et (e.g., “[textbox]
To”) and its associated operation ot (e.g., “Type Toronto”),

at = g(q,Ht, {a1, a2, · · · , at−1}),
at : {et, ot}

(C)

We note that MindAct converts the target element prediction
problem into multiple-choice question-answering. Instead
of directly generating the target element, they split top-K
candidates into multiple clusters of five element options (in-
cluding the “None” option) and ask the LLM to pick one
element from each cluster. If more than one element is se-
lected, they form a new group with the chosen ones and
iterate this process until a single element is selected.

The action predictor of DUAL-VCR takes the same in-
put as MindAct, except for appending each candidate ele-
ment with its neighboring elements. We generate an HTML
snippet St based on the top-K candidate elements and their
adjacent elements, and input the snippet (with the task de-
scription and the previous actions) to the LLM g and predict
the action at,

at = g(q, St, {a1, a2, · · · , at−1}) (D)

Training Details. We again adopt the configuration from
MindAct. We train Flan-T5base [3], an instruction fine-tuned
encoder-decoder LLM, with a batch size of 32 and a learn-
ing rate of 5e-5 for 5 epochs. We optimize its parameters
with the language modeling loss on a single Nvidia A6000
48GB GPU.

B. Dataset Details

Mind2Web [4] recently proposed the first real-world web
navigation benchmark, consisting of over 2,000 open-ended
tasks from more than 100 real-world websites. They collect
the websites across 31 diverse domains, including travel,
shopping, entertainment, public service, etc. Unlike other
existing benchmarks [11, 23] limited to simulated environ-
ments, Mind2Web instead focuses on real-world environ-
ments (Table A). For instance, Mind2Web provides real-
world websites with rich content, including thousands of
HTML elements, tens of thousands of HTML tokens, and
7.3 web-related actions per task on average.

Data Collection. Given a real-world website (e.g., an air-
line website), Mind2Web first asks annotators to write open-
ended realistic tasks (e.g., “Find one-way flights from New
York to Toronto.”) relevant to the website. The workers are
then required to complete the defined task with a sequence
of actions. Specifically, each action is composed of element
selection and operation selection. The annotators should
first find an element (e.g., “[textbox] From”) relevant to the
task on the webpage and perform an operation (e.g., “Type
New York”) on the element.

Dataset Split. The Mind2Web dataset provides a training
split with 1,009 real-world tasks collected from 73 web-
sites. Each task consists of a sequence of action sam-
ples. In total, there exist 7,775 samples in the training split.
Mind2Web evaluates a web agent on three different test
splits. TestCross-Domain measures the agent’s generalizabil-
ity to a new domain where it has not seen any websites or
tasks associated with that domain during training. The split
contains 912 tasks with 5,911 samples from 73 real-world
websites. In TestCross-Website, while the agent is not exposed
to test websites, it is trained on websites from the same do-
main and potentially with similar tasks. This configuration
enables us to evaluate the agent’s capacity to adapt to en-
tirely new websites within familiar domains and tasks. This
split consists of 177 tasks, along with 1,373 samples ob-
tained from 10 websites. Cross-Task is a conventional test
split, which is the random 20% of the dataset. The split has
252 tasks with 2,094 samples from 69 websites.

Task Details. The Mind2Web task consists of a sequence
of actions, each comprising a pair of an actionable HTML
element (e.g., “[textbox] To”) and an operation (e.g., “Type
Toronto”). Mind2Web provides three common operations:



Dataset # Domains # Websites Website # Tasks Avg #
Avg # HTML

Type Actions Elements Tokens

MiniWoB++ [11] - 100 Simplified 100 3.6 28 500
Mind2Web [4] 31 137 Real-world 2,350 7.3 1,135 44,402

Table A. Detailed Statistics of Mind2Web [4]. Min2Web is the first real-world web navigation benchmark, collecting over
100 real-world websites across various domains. Unlike previous benchmarks [11, 23], Mind2Web provides an extensive
amount of real-world webpage content, including over 1K/44K HTML elements/tokens on average.

Ranker Action
Cross-Task

Predictor Ele. Acc Op. F1 Step SR

MINDACTRANK
51.4 75.6 48.7
54.2 79.5 50.9

Table B. DUAL-VCR with a larger predictor. We increase the
size of the predictor from Flan-T5base to Flan-T5large. Even with
the larger predictor, DUAL-VCR notably outperforms the base-
line, showing the complementarity of DUAL-VCR and LLMs.

Click, Type, and Select. For Type and Select operations, an
additional argument (e.g., “Toronto”) is required.

C. Additional Experiments

More powerful action predictor. We scale up the predic-
tor from Flan-T5base to Flan-T5large to check whether our
visual neighbors are still beneficial with the larger model.
As shown in Table B, DUAL-VCR still achieves notable
gains, suggesting the complementary capabilities of LLMs
and our visual neighbors.

Neighbors from an HTML tree. An HTML document
can be represented as a DOM tree, a hierarchical tree of
HTML objects (e.g., Element: <head>). Thus, we can also
extract each element’s neighbors from the HTML tree. We
compare the tree-based neighbors with our neighbors ob-
tained from the screenshot (Table C). Our visual neigh-
bors (DUAL-VCRPRED) significantly outperform those de-
fined by the HTML tree (HTMLTREENEIPRED), suggesting
that visual-spatial context is more beneficial.

Ranker with whole visual tokens. In §4.2 of the main text,
we show that DUAL-VCR (i.e., the use of visual neighbors)
is more effective than the use of the entire image for web
navigation (e.g., DUAL-VCRPRED vs. WHOLEIMAGEPRED,
DUAL-VCRVNEI-TXT+VIS vs. WHOLEIMAGERANK). To fur-
ther substantiate the efficacy of DUAL-VCR over using the
whole image, we conduct additional experiments (Table C).
Specifically, we train a ranker (WHOLEVISTOKRANK) us-
ing all visual tokens extracted from the whole image based
on the Pix2Struct ViT [13]. Like the previous results in
the main text, WHOLEVISTOKRANK outperforms the base-
line (e.g., 44.1% vs. 42.0%), suggesting the benefit of utiliz-
ing the entire image. However, WHOLEVISTOKRANK falls
short of DUAL-VCRVNEI-TXT+VIS (46.0%), which uses sig-

Ranker
Action Cross-Task
Predictor Ele. Acc

MINDACTRANK

MINDACTPRED 42.0
WHOLEIMAGEPRED 43.6
HTMLTREENEIPRED 43.8
DUAL-VCRPRED 44.4

WHOLEIMAGERANK

MINDACTPRED

43.9
WHOLEVISTOKRANK 44.1
DUAL-VCRVNEI-TXT 44.6
DUAL-VCRVNEI-TXT+VIS 46.0

- WHOLEHTMLPRED 38.6

Table C. Additional results for Table 6 in the main text.
Our neighbors defined by a screenshot (DUAL-VCRPRED) no-
tably outperform the neighbors defined by an HTML tree
(HTMLTREENEIPRED). Moreover, DUAL-VCRVNEI-TXT+VIS is sig-
nificantly better than WHOLEVISTOKRANK, which uses all visual
tokens of the entire image. This again highlights the benefit of
DUAL-VCR in both computational efficiency and performance.

nificantly fewer inputs (i.e., only neighboring elements).
This again supports the advantages of DUAL-VCR over the
whole image regarding computational efficiency and perfor-
mance.

Type of pre-trained visual features. Table D summarizes
the importance of the type of pre-trained visual features on
web navigation. As discussed in §3.2 of the main text, to
train the ranker, we extract the element’s visual features us-
ing Pix2Struct [13]’s VIT, pre-trained on webpage screen-
shots. We investigate if these pre-trained “screenshot” vi-
sual features (DUAL-VCRVNEI-TXT+VIS-WEB) indeed contain
meaningful HTML context for downstream web navigation
tasks. Concretely, we compare them with features extracted
from ViT pre-trained on COCO [16], an object recognition
benchmark containing common objects in “natural images”.
We denote a ranker using the COCO visual features by
DUAL-VCRVNEI-TXT+VIS-COCO. We first observe that DUAL-
VCRVNEI-TXT+VIS-COCO outperforms DUAL-VCRVNEI-TXT that
only leverages elements’ HTML text features to train the
ranker (e.g., 45.2% vs. 44.6% on Ele. Acc). This implies
that even if visual features are from a different domain
(i.e., natural images), incorporating them is still helpful
in web navigation tasks. However, compared to DUAL-
VCRVNEI-TXT+VIS-WEB, which uses both HTML visual and



Ranker
Cross-Task

Ele. Acc Op. F1 Step SR

DUAL-VCRVNEI-TXT 44.6 75.7 43.2
DUAL-VCRVNEI-TXT+VIS-COCO 45.2 76.3 43.4
DUAL-VCRVNEI-TXT+VIS-WEB 46.0 78.6 44.8

Table D. Effects of different types of pre-trained visual fea-
tures. The pre-trained screenshot visual features [13] are more
beneficial on the downstream web navigation than those extracted
from ViT pre-trained on natural images of COCO [16].

textual features, DUAL-VCRVNEI-TXT+VIS-COCO performs less
(e.g., 46.0% vs. 45.2% on Ele. Acc). This highlights that
the pre-trained “screenshot” visual features indeed contain
HTML-related context, which benefits more in completing
the downstream web navigation tasks.

Existing/Concurrent Works. A number of previous stud-
ies [1, 11, 12, 15, 17, 20–23] have explored web navigation
but mainly worked on simplified websites [11, 23], which
deviate from the focus of our study. Our attention is in-
stead directed towards real-world scenarios involving var-
ious real-world websites with extensive raw HTML docu-
ments (e.g., Mind2Web). We have identified a few concur-
rent works [2, 5–7, 10, 24] exploring Mind2Web, but they
mostly focus on (i) large-scale pre-training, requiring sub-
stantial amounts of pre-training HTML data, or (ii) eval-
uating the potential of recent vision-and-language models
(e.g., GPT4-V [19]) as a web agent. As their codes or pre-
training datasets have not been released yet, replicating their
work would be prohibitively costly. We thus do not consider
them in our studies.
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