
Supplementary Material for
Beyond Image Super-Resolution for Image Recognition

with Task-Driven Perceptual Loss

In this supplementary document, we show the addi-
tional results and ablation studies omitted from the main
manuscript due to the lack of space and describe the details:
• S1. Effectiveness of our SR results
• S2. Analysis on CQMix
• S3. Efficiency of our SR4IR
• S4. Effectiveness of the task-driven training
• S5. Diverse degradation scenarios for SR4IR
• S6. Evaluation on the SR benchmark dataset
• S7. Training details
• S8. Details for reproducing the previous works
• S9. More visualization comparisons

S1. Effectiveness of our SR results
In the main manuscript, we argue that our SR4IR can restore
task-relevant high-frequency details that are beneficial for a
subsequent image recognition task. To further demonstrate
our claim, we compare the SR results trained by our SR4IR
(referred to as ISR(SR4IR)) with two other sets of SR results
that are trained by (1) using pixel-wise reconstruction loss
(referred to as ISR(pixel)) and (2) employing a combination
of pixel-wise loss and conventional perceptual loss (referred
to as ISR(pixel+percep)).

Performance on S → T setting. We compare the per-
formance of the task network trained by the three types of
SR images following the same setting as S → T described
in Section 4. Table S1 shows that using ISR(SR4IR) achieves
significantly superior performance (71.1%) compared to the
cases using ISR(pixel) (68.3%) and ISR(pixel+percep) (69.7%).
Furthermore, it is worth noting that the S → T setting
with ISR(SR4IR) achieves performance comparable to our fi-
nal performance, which attains the accuracy of 71.4%, as
presented in Table 3. These results demonstrate that the
performance improvement in our SR4IR model is largely
attributed to the SR results, in which the task-relevant high-
frequency details are successfully restored.

Performance on task network trained on HR. To fur-
ther investigate the similarity between HR and SR images
in terms of task-relevant features, we evaluate the SR results

Training images Top-1 Acc.↑ (%)
ISR(pixel) 68.3
ISR(pixel+percep) 69.7
ISR(SR4IR) (Ours) 71.1

Table S1. Performance on S → T setting. We evaluate the
image classification accuracy on the StandfordCars dataset with
an SR scale of x8. We use the EDSR-baseline as an SR network.

Test images Top-1 Acc.↑ (%)
IHR (Oracle) 86.4
ISR(pixel) 29.4
ISR(pixel+percep) 46.5
ISR(SR4IR) (Ours) 52.3

Table S2. Performance on the task network trained with HR.
We evaluate the image classification accuracy on the Standford-
Cars dataset with an SR scale of x8.

ISR(pixel), ISR(pixel+percep), and ISR(SR4IR) using a task network
that has been exclusively trained on HR images (referred
to as THR). Figure S1 shows the t-SNE [79] visualization
results of each SR result within the feature space of THR.
Our ISR(SR4IR) exhibits the closest resemblance to HR im-
ages in the feature space of THR compared to ISR(pixel) and
ISR(pixel+percep). In addition, it should be noted that ISR(pixel)
resembles poorly HR images even with the highest PSNR
values, indicating that the PSNR is a less important factor in
representing task-relevant features. Table S2 further shows
the superior performance of our ISR(SR4IR) when the SR re-
sults are evaluated by THR. These results demonstrate that
ISR(SR4IR) contains high-frequency contents closely related
to tasks, validating the effectiveness of our SR4IR.

S2. Analysis on CQMix

In Section 3.2, we propose the CQMix to prevent a task net-
work from learning biased features that could undermine
the effectiveness of TDP loss. To further analyze the ef-
fect of the CQMix, we visualize class-activation maps us-
ing Grad-CAM [78] obtained from a task network trained
by our framework with/without the CQMix, which are pre-
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Avg. Distance: 16.51

Avg. PSNR: 20.82

(a) IHR ↔ ISR(pixel)

Avg. Distance: 13.83

Avg. PSNR: 19.98

(b) IHR ↔ ISR(pixel+percep)

Avg. Distance: 13.15

Avg. PSNR: 20.09

(c) IHR ↔ ISR(SR4IR) (Ours)

Figure S1. t-SNE visualization results. We visualize the t-SNE plots based on the final feature of the feature extractor of a task network
trained with HR images. The orange and blue points represent the HR and SR samples, respectively. We display the average PSNR in the
RGB space and the average Euclidean distance in the feature space between the HR and SR pairs, in the bottom right corner of each figure.
For the distance, the lower value indicates a higher resemblance between the SR results and the HR counterpart.

sented in Figure S2. When CQMix is not used (upper row),
the task network tends to focus on specific image features,
the i.e. shortcut feature [16], such as car wheels or head-
lights. In contrast, when CQMix is used (lower row), the
task network tends to focus on wider regions and utilizes
additional diverse image features, such as the car body and
emblem. These visualization results demonstrate that our
CQMix is effective in preventing the task network from
learning shortcut features, leading to performance improve-
ments when combined with the TDP loss in our framework.

S3. Efficiency of our SR4IR
In Table S3, we assess the efficiency of our SR4IR with the
baseline method ILR → T . As introduced in Section 4 of the
main manuscript, the baseline method trains a task network
using bilinear-upscaled LR images without the assistance
of SR networks. Despite the superior task performance,
our SR4IR incurs a certain degree of computational cost in-
crease compared to ILR → T due to introducing the SR net-
work. Nevertheless, we highlight that the performance gain
from SR4IR does not simply come from the increased com-
putational costs, demonstrated through a comparison with
the baseline using a larger backbone model, ILR → TLarge.
In terms of training time, our SR4IR does require some ad-
ditional training time compared to ILR → T due to the in-
corporation of the SR network. For the real-time capability,
we observe that the throughput of our SR4IR experiences a
modest decrease compared to ILR → T but still faster than
ILR → TLarge, indicating practical applicability of SR4IR.

S4. Effectiveness of the task-driven training
In Table S4, we show the effectiveness of task-driven train-
ing by evaluating the performance across three image recog-
nition tasks with SR networks specially tailored for each
task. Compared to the case of ‘task-driven’ SR, which is
presented in the diagonal entries, using the SR network
trained for different tasks largely degrades the performance.

Figure S2. Grad-CAM visualization results according to the
CQMix. The upper and lower rows represent the Grad-CAM [78]
results from the task network trained without and with the pro-
posed CQMix. We use EDSR-baseline [35] with a scale factor of
x8 and StandfordCars [30] dataset.

mIoU↑ # Params GFLOPs Memory
Cache

Training time
(GPU hours)

Throughput
(img/s)

ILR → T 49.3 11.0M 17.5 456MB 0.64 33.8
ILR → TLarge 50.2 42.0M 305.5 1621MB 4.25 15.2
SR4IR (Ours) 55.0 12.7M 49.5 695MB 2.41 25.3

Table S3. Efficiency of our SR4IR on x8 segmentation task.
GFLOPs are calculated based on 480x480 resolution images.
Memory cache and throughput are evaluated using the PASCAL
VOC [14] validation set and an NVIDIA RTX A6000 GPU. We
use [35] as an SR network. The T and TLarge are DeepLabV3 [7]
with MobileNetV3 [22] and ResNet50 [20] backbone.

Used SR network
Segmentation Detection Classification

(mIoU↑) (mAP↑) (Top1 Acc.↑)
SSegmentation 55.0 22.4 61.0
SDetection 50.3 25.5 60.2
SClassification 48.4 20.0 71.4

Table S4. SR4IR performance according to the SR network.
STask represents the SR network specifically tailored for each
Task through our SR4IR. We use EDSR-baseline [35], PASCAL
VOC [14] and StanfordCars [30] with x8 downsampling.



These results demonstrate the importance of employing a
task-driven SR network in improving task performance.

S5. Diverse degradation scenarios for SR4IR

Table S5 shows the performance of our SR4IR on diverse
versions of degraded LR images, which have undergone
bicubic downsampling with an additional Gaussian blur fil-
ter. Our SR4IR consistently improves the task performance
in all degradation cases, indicating its general applicability.
Moreover, the performance gain from SR4IR becomes more
pronounced as the degradation severity increases. This ob-
servation is consistent with the discussions in Section 4.1 of
our main manuscript, where we noted that the performance
improvement of SR4IR is more significant as the SR scale
changes from x4 to x8.

S6. Evaluation on the SR benchmark datasets

Table S6 shows the performance of our task-driven SR
network on SR benchmark datasets. Compared to con-
ventional SR methods trained on pixel-wise loss, the SR
network trained by our SR4IR framework exhibits lower
PSNR/SSIM values on SR benchmark datasets. However,
as discussed in Section S1 and 4.1 of our main manuscript,
we highlight that restoring task-relevant high-frequency de-
tails is crucial for the task performance rather than such
distortion-oriented metrics.

S7. Training details

The number of training epochs is set to 100 for semantic
segmentation, 30 for object detection, and 200 for image
classification. The task loss is set to cross-entropy loss in se-
mantic segmentation and image classification, and a combi-
nation of classification, roi box regression, objectness, and
rpn box regression loss in object detection, following the
official PyTorch implementation github [77]. In the case
of applying the TDP loss, we exclude the TDP loss during
the initial one-tenth of the training process to allow the task
network to learn meaningful task-relevant features to some
extent before introducing the TDP loss.

S8. Implementation details for previous works

TDSR [19]. In our re-implementation, we use TDSR-
0.01, which does not initially employ the task loss in the
first one-third of the training process and then introduces
the task loss with a ratio of 0.01 in the remaining training
iteration. Unlike the original paper, which used confidence
loss and localization loss as task loss, we adopt the cross-
entropy loss as task loss, as our ablation studies cover se-
mantic segmentation and image classification.

Bicubic
Gaussian blur + Bicubic

std = 5.0 std = 10.0 std = 15.0
mIoU↑ LPIPS↓ mIoU↑ LPIPS↓ mIoU↑ LPIPS↓ mIoU↑ LPIPS↓

ILR → T 49.3 0.476 47.9 0.543 38.3 0.631 29.5 0.650
SR4IR (Ours) 55.0 0.380 56.4 0.367 49.8 0.485 41.4 0.543

Table S5. Diverse degradation scenarios on x8 segmentation.
We use the EDSR-baseline [35] as an SR network. We evaluate
the performance on the PASCAL VOC [14] dataset.

Set5 Set14 B100 Urban100
EDSR-baseline 32.10 / 0.863 28.58 / 0.743 27.56 / 0.711 26.04 / 0.763
EDSR-baseline-SR4IRSegmentation 29.32 / 0.800 26.76 / 0.688 26.39 / 0.660 23.77 / 0.667

Table S6. PSNR / SSIM on x4 SR benchmark datasets. For
the task-driven SR network, we use EDSR-baseline [35] trained
by our SR4IR on the segmentation task.

SOD-MTGAN [3]. Following the original paper, we in-
troduce an additional fully connected layer in the task-
specific head module Hθhead , and utilize the output from
that branch as the discriminator output. Similarly to the
TDSR, we replace the detection losses used in the original
paper with the cross-entropy loss to cover semantic segmen-
tation and image classification. In the original paper, the
authors set the loss weights for adversarial loss, task loss,
and pixel-wise reconstruction loss as 0.001, 0.01, and 1.0,
respectively. However, we found that this setting resulted in
significantly lower performance in our experiments. Hence,
we adjusted the task loss weight from 0.01 to 1.0.

S9. More visualization comparison results
We present additional qualitative results for semantic seg-
mentation (Figure S3), object detection (Figure S4), and im-
age classification (Figure S5, S6). We compare our SR4IR
with all baselines, ILR → T , S → T , T → S, and S + T ,
as introduced in Section 4 of our main manuscript. These
results demonstrate that our SR4IR framework achieves the
most accurate predictions across all tasks while producing
visually pleasing results.



(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

Figure S3. Visualization of images and semantic segmentation results on PASCAL VOC dataset [14]. We present the restored images
and the corresponding predicted segmentation maps. For (b), (c), (d), and (e), we use the SwinIR [33] model with an SR scale factor of x4.



(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

Figure S4. Visualization of object detection results on PASCAL VOC dataset. The red box with orange annotation means the predicted
object bounding box with the corresponding prediction. For (b), (c), (d), and (e), we use the SwinIR model with an SR scale factor of x4.



(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

Figure S5. Visualization of images and image classification results on StanfordCars [30] dataset. We present the restored images and
the corresponding caption. The caption below the image represents the predicted image classification results, and a checkmark indicates if
the prediction is correct. For (b), (c), (d), and (e), we use the SwinIR model with an SR scale factor of x4.

(a) ILR → T (b) S → T (c) T → S

(d) S + T (e) SR4IR (Ours) (f) Ground-truth

Figure S6. Visualization of images and image classification results on CUB-200-2011 dataset [57]. We present the restored images and
the corresponding caption. The caption below the image represents the predicted image classification results, and a checkmark indicates if
the prediction is correct. For (b), (c), (d), and (e), we use the SwinIR model with an SR scale factor of x4.

References
[77] TorchVision maintainers and contributors. Torchvision: Py-

torch’s computer vision library. https://github.com/
pytorch/vision, 2016.

https://github.com/pytorch/vision
https://github.com/pytorch/vision


[78] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-
cam: Visual explanations from deep networks via gradient-based
localization. In ICCV, 2017.
[79] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research, 2008.


	. Effectiveness of our SR results
	. Analysis on CQMix
	. Efficiency of our SR4IR
	. Effectiveness of the task-driven training
	. Diverse degradation scenarios for SR4IR
	. Evaluation on the SR benchmark datasets
	. Training details
	. Implementation details for previous works
	. More visualization comparison results

