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A. Datasets

This section describes details of the datasets we used in
the experiments. InterHand2.6M [S5] was mainly used and
RGB2Hands [S6] used as an additional dataset. For all
datasets, the images are resized to 256 ⇥ 256 pixels.

InterHand2.6M [S5]. InterHand2.6M is constructed by
capturing sequential frames from multi-view videos of in-
teracting two hands. It has 80 cameras for capturing sub-
jects, which are 19 males and 7 females, in total 26 unique
subjects. We selected camera viewpoints to ensure a diverse
range of perspectives for the experiment. We used all 26
identities and randomly selected the poses along 17 ranges
of motion (ROM) to demonstrate the fidelity of our model
in various environments.

RGB2Hands [S6]. We show the results of BiTT using the
RGB2Hands dataset. Along with 4 different identities in the
RGB2Hands dataset, we select a random image for training
and select random other 40 images of different poses of the
same identity. Note that RGB2Hands has low-resolution
images and both hands generally show the same side of the
hand (Tab. 3 in the main paper), thus it is less suited to
demonstrate our method using the texture symmetry. The
performance gain obtained is relatively less significant com-
pared to that of InterHand2.6M.

B. Baselines

S2Hand [S7]. We expanded the functionality of S2Hand,
originally designed for single hand reconstruction, to ac-
commodate both hands. We first increase the feature dimen-
sions of the encoder to double times and use two separate
texture regression layers for each hand. Informing symmet-
ric information of both hand, the same mean texture color
for each hand are initialized. We used ground truth hand
mesh and pose for a fair comparison.

HTML [S8]. We utilize the principal components of the
shadow-free version of the left and right hand. We used an
HTML network in the coarse stage to estimate each hand
texture vector. The texture vector is then multiplied by the
corresponding principal components and generates a full
hand UV map. For training the HTML network, we use
the pixel-wise L1 reconstruction loss.
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Figure 9. This figure shows the illustration of the albedo consisi-
tency loss.

HARP [S9]. HARP optimizes hand texture with visible
pixel values from a monocular video. A monocular video
including 4 frames of a hand was used to optimize HARP.
InterHand2.6M [S5] has more than 300 points of the light
source, showing a low rate of shadows. Thus, we remove
the shadow rendering part in HARP and optimize the pixel
values from the input sequence frames.

C. Implementation Details

In this section, we describe a detailed implementation archi-
tecture. We used PyTorch for implementation. Our work is
based on HTML [S8] UV texture map template, where the
UV map has the size of 1024 ⇥ 1024.

Albedo Network. The albedo network directly follows
the U-Net structure [S1] where the input and output are
an image. We use the LeakyReLU [S2] activation function
in the encoding layer and the ReLU activation function in
the decoding layers. In the albedo network, the encoding
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Figure 10. This figure shows the effectiveness of albedo consistency loss. In the process of reconstructing a hand from a given image
and subsequently rendering it under two distinct lighting conditions, we generate three reconstructed and relit hand images. With three
reconstructed/relightened hands, we estimate the albedo image for each. From the depicted images, we can find that utilizing albedo
consistency loss can steadily estimate the albedo image, even when subjected to varying lighting conditions.

layer begins with input channels, which are progressively
increased to 64, 128, 256, and 512 channels. After the en-
coding layers, the decoding layers reduce the feature dimen-
sion to 1024, 512, 256, and 128 channels, respectively. The
reduction is achieved by concatenating the encoded features
to the decoded features, while doubling the channel dimen-
sion. We upsample the feature by a scale factor of 2 with
the nearest mode in each decoding layer.

Light Network. Light network uses an encoder network
that takes an input image. The output of the light network
which is denoted as L, is a 12-dimensional vector. This vec-
tor consists of different components: Lcolor, Ldiff , Lspec,
and Ldirection, each of which is a 3-dimensional vector.
The values for Lcolor, Ldiff , and Lspec are adjusted to be-
tween 0.2 and 1. We used ReLU for the activation function.

The light network L, starting from the input image, in-
creases the feature dimension to 32, 64, 128, 256. Tanh is
applied to the final activation function.

HTML Network. HTML [S8] network also uses an en-
coder network similar to the light network. The HTML
network is used at the coarse stage to estimate HTML vec-
tors for both hands. The HTML network output is a vector
of H(I) 2 R202, where I is an input image and H is an
HTML network. Among the 202-dimensions, the first 101
features represent the left hand HTML vector hl, while the
last 101 features represent the right hand HTML vector hr.
Each vector is then multiplied to the corresponding princi-
pal components to generate a full UV map. Similar to the

light network, we use the ReLU activation function for each
encoding layer.

From the input image, the HTML network H encodes
the feature increasing the dimesion to 64, 128, 256, 512 and
202. Tanh is applied to the final activation function.

Bi-directional Texture Reconstructor (BTR). Bi-
directional Texture reconstructor (BTR) is based on the
ResNet [S3] structure. In each layer, it has 2 resblocks.
After the 2 sequence res blocks, we downsample the feature
size into half. After each resblock, the feature dimension is
increased to 16, 64, 128, and 256. The encoding network
for each hand shares the same parameter weights.

The decoding part consists of a bidirectional decoding
block. We have a total 3 decoding blocks with input fea-
ture dimensions of 48, 192, 384, and 768 ( 3 ⇥ (encoding
channels)). We finally use the activation function sigmoid
to ensure texture pixel colors between 0 and 1, preventing
odd colors when rendered to 2D images.

D. Albedo Consistency Loss

The albedo consistency loss aims to ensure the consistency
of estimated albedo maps across images rendered under dif-
ferent lighting conditions. Fig. 9 shows an illustration of
the albedo consistency loss concept. In this work, we have
reconstructed the hand image and two other images that
have been relit. Albedo network A estimates the albedo
map of each image. In our experiment, we constructed two
different novel light conditions. Novel light 1 is charac-
terized by a light source positioned at the bottom and has



half the brightness of white light. On the other hand, novel
light 2 differs from novel light 1 in terms of color, which
is the same as the reconstructed light color. By applying
the albedo consistency loss, we ensure that the albedo maps
obtained from these three different light conditions remain
consistent with each other. This helps to maintain the ac-
curate representation of the object’s reflectance properties
regardless of the lighting variations.

Fig. 10 illustrates the efficacy of the albedo consistency
loss. It is shown that the albedo consistency loss allows a
more precise and consistent estimation of the albedo image
compared to not using it.
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Figure 11. Qualitative results of BiTT on Re:InterHand [S5]
dataset. We present a relightened image, and a novel pose of hands
in the same lighting environment of input image. The identical
novel pose images effectively show the differences of estimated
lighting condition.

E. Subjective Tests

We conducted a subjective test involving 27 users to answer
72 questions, earning a total of 1,944 responses. Each ques-
tion presented a randomly generated image of each method
with its corresponding GT image to evaluate the similarity
and texture realism. Responses were collected in a 5-point
discrete scale, ranging from ”bad” (1) to ”excellent” (5).
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Figure 12. The subjective test results.

Our method achieved the best scores compared to
baselines. S2Hand [S7] showed lower scores due to blurred
texture as a limitation of vertex rendering. HTML [S8]
showed strength in realism, while showing weakness in
similarity. HARP [S9] concluded with scores ranging
between ”fair” (3) and ”good” (4), showing difficulty in the
few shot learning. In Fig. 12, we report subjective results
with Pearson correlation value of the L1, PSNR, and SSIM
metrics.

F. More Qualitative Results

In this section, we present additional qualitative results of
our reconstructed images of two hands, in Fig. 14. Even
if the ground truth mesh does not perfectly align with the
input hand image, our proposed method BiTT can present
realistic hand textures. As a hand texture parametric model
(HTML) [S8] is robust to the noise and lacks its ability to
represent background color, BiTT rendered image does not
include background pixel colors on the hand texture due to
minor geometric misalignments. Each column, from left
to right, represents the input image, reconstructed image,
novel pose, novel viewpoint with ground truth images, and
relightened hands.

Results on Re:InterHand [S5] Dataset. Re:InterHand
[S5] used the RelightableHands [S4] method and gener-
ated a large dataset of two interacting hands relightened in
several different environments. RelightableHands presents
the neural rendering approach to create relightable hand



avatars. This process requires a specialized capturing stu-
dio having numerous cameras and light sources. Note our
method only requires a single image input, end users in
AR/VR systems can easily generate their personalized two-
hand avatar realistically.

As Re:InterHand has been passed through the learning
process, the generated images exhibit less clear details of
hands, such as wrinkles, hairs, and veins, compared to In-
terHand2.6M [S5] where the images are taken directly from
cameras. We present several qualitative results of BiTT in
the Re:InterHand dataset at Fig. 11. The figure demon-
strates that BiTT accurately reconstructs a relightable two-
hand avatar from an input image, even in diverse settings of
environments.

Input Image w/o Shadow w/ Shadow

Figure 13. Visualization of the results with shadow rendering ap-
plied in BiTT method.

Applying Shadow Construction. Our method relies on
mesh-based rendering, which makes it easily compatible
with traditional concepts in computer graphics. We have
applied differentiable self-shadow rendering directly from
the methodology presented in [S9]. Given that our method
involves two hands, it faces significant challenges in occlu-
sion from each hand, along with self-occlusion toward the
light source. Despite these complexities, it effectively cap-
tures the shadow appearance occured by self-occlusion and
interhand-occlusion. The results are illustrated in Fig. 13.
Since InterHand2.6M [S5] was captured in an environment
with numerous light sources, the application of shadow ren-
dering tends to deviate from the input image. Nevertheless,
in a scene illuminated by a single point light, it can enhance
the realism of the rendered hand.

References

[S1] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.

In MICCAI, 2015. 1
[S2] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rec-

tifier Nonlinearities Improve Neural Network Acoustic Mod-
els. In ICML, 2013. 1

[S3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
2

[S4] Shun Iwase, Shunsuke Saito, Tomas Simon, Stephen Lom-
bardi, Timur Bagautdinov, Rohan Joshi, Fabian Prada,
Takaaki Shiratori, Yaser Sheikh, Jason Saragih. Relightable-
Hands: Efficient Neural Relighting of Articulated Hand Mod-
els. In CVPR, 2023. 3

[S5] Gyeongsik Moon, Shunsuke Saito, Weipeng Xu, Rohan
Joshi, Julia Buffalini, Harley Bellan, Nicholas Rosen, Jesse
Richardson, Mallorie Mize, Philippe de Bree, Tomas Simon,
Bo Peng, Shubham Garg, Kevyn McPhail, Takaaki Shiratori.
A Dataset of Relighted 3D Interacting Hands. In NIPS, 2023.
3

[S5] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. Interhand2.6m: A dataset and baseline
for 3d interacting hand pose estimation from a single rgb im-
age. In ECCV, 2020 1, 4, 5

[S6] Jiayi Wang, Franziska Mueller, Florian Bernard, Suzanne
Sorli, Oleksandr Sotnychenko, Neng Qian, Miguel A.Otaduy,
Dan Casas, and Christian Theobalt. Rgb2hands: Real-time
tracking of 3d hand interactions from monocular rgb video.
ACM TOG, 2020 1

[S7] Yujin Chen, Zhigang Tu, Di Kang, Linchao Bao, Ying
Zhang, Xuefei Zhe, Ruizhi Chen, and Junsong Yuan. Model-
based 3d hand reconstruction via self-supervised learning. In
CVPR, 2021. 1, 3

[S8] Neng Qian, Jiayi Wang, Franziska Mueller, Florian Bernard,
Vladislav Golyanik, and Christian Theobalt. HTML: A Para-
metric Hand Texture Model for 3D Hand Reconstruction and
Personalization. In ECCV, 2020 1, 2, 3

[S9] Korrawe Karunratanakul, Sergey Prokudin, Otmar Hilliges,
and Siyu Tang. Harp: Personalized hand reconstruction from
a monocular rgb video. In CVPR, 2023. 1, 3, 4



Reconstructed Image Relit ImageNovel ViewpointTrained Image Ground TruthNovel Pose Ground Truth

Figure 14. More qualitative results of reconstructed hands rendered on the novel pose, novel viewpoint, and relightened image in the
dataset InterHand2.6M [S5].
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