
Supplementary Material for “Causal Mode Multiplexer: A Novel Framework for
Unbiased Multispectral Pedestrian Detection”

A. Related Work
We provide a related work section in two-fold.

A.1. Multispectral Pedestrian Detection

Current research on multispectral pedestrian detection
mainly focuses on developing effective fusion strategies.
For instance, MBnet [13] adaptively fuses the RGBT com-
plementary features according to illumination conditions.
Recent works improve each modal feature through cross-
modal learning. Kim et al. [5] proposed an uncertainty-
aware feature fusion (UFF) network that alleviates mis-
calibration and modality discrepancy problems. Cross-
Modality Fusion Transformer [9] introduces a new cross-
modality fusion mechanism based on self-attention. How-
ever, they all suffer from the modality bias problem, con-
straining practical applicability.

A.2. Causality-Inspired Machine Learning

Causal inference and counterfactual reasoning encour-
age machines to explore causality behind observational
likelihood, a proven and effective analytical approach in
many machine learning problems [7, 11]. Several works
leveraged counterfactual reasoning aiming to endow mod-
els with the capability to explore and understand causal ef-
fects. Niu et al. [8] mitigated the direct language effect on
visual question answering (VQA) by guiding the model to
learn the total indirect effect (TIE). Zhang et al. [12] intro-
duced the layout-based soft Total Direct Effect (L-sTDE) to
adjust the prediction of the navigation policy in object nav-
igation. Different from them, we propose a Causal Mode
Multiplexer (CMM) framework that interchangeably learns
between total effect (TE) and total indirect effect (TIE) de-
pending on the data type.

B. Comparison to Single-modal Models
Although our paper deals with modality bias problems in

multispectral pedestrian detectors, we provide an evaluation
of single-modal detectors to make our problem statement
clear. Single-modal models refer to pedestrian detection
models that operate with only one modality (e.g., only RGB
or only thermal). We train the Faster-RCNN [10] model on

the KAIST [4] train set and evaluate performance on the
KAIST test set and ROTX-MP. Here, KAIST and ROTX-
MP are multispectral pedestrian datasets, with RGB and T
image pairs. We use only one of the RGBT pairs (e.g., only
RGB for RGB single-modal detector) during train/test.

First of all, multispectral pedestrian detectors ( [5], Ours)
perform superiorly on KAIST data as these models use both
RGB and T information. Low miss rates indicate higher
performance. In particular, the Faster-RCNN trained with
RGB data performs poorly at night as RGB sensors degrade
in the dark. The thermal single-modal model performs well
at night but degrades in the daytime. Compared to them,
multispectral pedestrian detectors ( [5], Ours) perform well
on both day and night.

Second, RGB single-modal detector works well on
ROTX-MP, as the dataset mainly contains pedestrians
clearly visible in RGB but obscured in thermal. The thermal
single-modal detector performs very poorly because most
of the pedestrians are obscured in thermal. The conven-
tional multispectral pedestrian detection model ( Kim et al.
[5]) performs poorly in ROTX-MP due to the modality bias.
This model learns the statistical co-occurrence between the
pedestrian and their thermal features, thus failing to detect
pedestrians in ROTX as their thermal features are obscured.
Compared to them, our CMM framework achieves high per-
formance in ROTX-MP, effectively complementing RGB
and T information through causality.

Overall, our CMM framework performs superiorly com-
pared with single-modal models that leverage only RGB or
a thermal sensor because CMM effectively fuses comple-
mentary information from RGB and T. Especially, CMM
outperforms single-modal models where all day/night sce-
narios are required such as in KAIST data. Also, CMM
achieves higher performance than RGB single-modal mod-
els in ROTX-MP in which RGB single-modal models can
perform well. Moreover, our CMM framework solves the
modality bias problem that persists in conventional models
and performs well on ROTX-MP even when trained from a
biased training data.



Table 1. Comparison to single-modal models which use only RGB
or T. Models are trained on the KAIST data and tested on KAIST
and ROTX-MP. Best results obtained are highlighted in bold.

Train KAIST
Test KAIST ROTX-MP

Metric MR(↓) AP(↑)
Model Modality Day Night All All

Faster R-CNN Only RGB 27.45 42.27 32.18 60.61
Faster R-CNN Only T 26.70 9.73 20.79 5.33
Kim et al. [5] RGB+T 10.11 5.05 8.67 21.69
CMM (Ours) RGB+T 9.60 5.93 8.54 70.44

C. Implementation Details
For all models, the setting is kept the same across train-

ing KAIST [4], CVC [2], and FLIR [1] datasets.
CMM: The Uncertainty-guided model [5] is used as the
baseline model. This model is designed with the Fea-
ture Pyramid Networks (FPN) with a backbone network of
ResNet-50 [3]. Stochastic gradient descent (SGD) is used
for optimization. The Pytorch library is used, and we used
4 GTX 1080 Ti GPUs for training the model. Each GPU
processes 2 images, thus a total of 8 images are processed
per mini-batch. We train the model for 2 epochs. The initial
learning rate is 0.007 and there is a 0.1 learning rate decay
for each epoch. The number of Region of Interests (RoIs)
per image is set to 300.
Kim et al. [5]: The initial learning rate is 0.006 for the first
2 epochs. Then there is a 0.1 decay. We train the model for
3 epochs. The other implementation settings are identical
to CMM.
Halfway Fusion [6]+Faster RCNN [10] (HFF): The ini-
tial learning rate is 0.008 for the first 2 epochs and there is a
0.1 learning rate decay. The model is trained for 3 epochs.
We used the SGD optimizer is used.
CFT [9]: 0.01 initial learning rate, 0.937 momentum,
0.0005 weight decay, and 32 batch size. 200 epochs are
trained we use the initial YOLO-v5 weight pre-trained on
the COCO dataset. The code we used is from the GitHub
page provided by the original authors. These implementa-
tion details are the same as the original work.
MBNet [13]: We use the same setting as the original paper.
Resnet-50 trained on Imagenet is used as the backbone net-
work. We used the official code from GitHub. The model is
trained for 7 epochs. The learning rate is set to 0.0001 and
batch size is 10. The Adam optimizer is used. We used the
official code from GitHub.

D. No-treatment Condition
We introduce the implementation method of the no-

treatment condition in Section 4.1. The no-treatment is de-
fined as blocking (e.g., nullifying) the input from RGB or
thermal. Denote the RGB feature as XR and the thermal
feature as XT . Then we can write the no-treatment condi-
tion as XR = xR∗ = ϕ and XT = xT ∗ = ϕ. Note that

neural networks can’t deal with a no-treatment condition in
which inputs have a null value. Under the no-treatment con-
dition, we make the assumption that the neural model will
sample inputs using a learnable parameter c which is ini-
tialized to zero. In this case, YxR

, YxT
, and YM can be

represented as:

YxR
=

{
yxR

= HθXR
(xR) if XR = xR

yxR∗ = c if XR = ϕ
(1)

YxT
=

{
yxT

= HθXT
(xT ) if XT = xT

yxT ∗ = c if XT = ϕ
(2)

Ym =

{
ym = HθM (m) if XR = xR and XT = xT

ym∗ = c if XR = ϕ or XT = ϕ.
(3)

E. More Visualized Results
We provide more visualized results in Fig.1-5. Fig.1-2

shows results on ROTX data. Fig.3 shows results on ROTO
data. Fig.4 shows results on RXTO data. Fig.5 shows some
failure cases.



Table 2. Ilumination-aware weighting [a] can improve CMM.
CMM+I: CMM incorporated with illumination-aware weighting.
The performances are evaluated on different datasets.

Train KAIST CVC-14 FLIR
Test ROTX-MP KAIST ROTX-MP CVC-14 ROTX-MP FLIR

Metric AP (↑) MR (↓)(Day/Night/All) AP (↑) MR (↓)(Day/Night/All) AP (↑) AP (↑)
CMM 70.44 9.60 5.93 8.54 34.96 27.81 7.71 17.13 57.09 87.80

CMM+I 75.22 8.65 6.72 8.09 41.81 27.62 6.12 16.05 61.86 88.01

Table 3. Performance comparison with ProbEn [b] on KAIST,
CVC-14, FLIR, and ROTX-MP datasets.

Train KAIST CVC-14 FLIR
Test ROTX-MP KAIST ROTX-MP CVC ROTX-MP FLIR

Metric AP (↑) MR (↓)(Day/Night/All) AP (↑) MR (↓)(Day/Night/All) AP (↑) AP (↑)
ProbEn [b] 18.8 9.93 5.41 8.50 16.64 23.01 21.02 22.23 15.98 87.65

CMM 70.44 9.60 5.93 8.54 34.96 27.81 7.71 17.13 57.09 87.80

RGB Thermal

Figure i. We zoom in a frame of CVC-14-Day. The annotation
(green) and conventional model ([14,27,40,19]) detections (yel-
low) miss the ROTX person (red arrow). Though CMM (red) can
detect these miss-labeled objects, they will be evaluated as wrong
results. This shows the issues in the CVC-14-Day dataset.

F. Rebuttal Questions & Answers
[dcFe] Incorporate the illumination-aware weighting
method [a] into CMM and evaluate the performance.
The results are in Table i. It shows that CMM can be further
improved by incorporating such techniques. We will cite
the paper [a] and update these results and discussions.
[dcFe] In Table 2, why does CMM underperform on
CVC-14-Day compared to [14,27,40]?
CVC-14 annotations are inconsistent across frames (mis-
alignments & miss-labels), especially in CVC-14-Day.
Such deficiencies make it hard for CMM to achieve bet-
ter Miss-Rates (MR) than existing methods, despite making
better detections. Figure i shows an example of this issue.
[dcFe] Include comparison with ProbEn [b].
Table ii shows the comparisons of CMM with ProbEn [b]
(RGB+T version with v-avg). CMM outperforms ProbEn
on the CVC-14, FLIR, and ROTX-MP datasets. Similar
performances are obtained on KAIST. The results on the
ROTX-MP highlight the generalizability of CMM. We will
cite ProbEn [b] and update these results and discussions.
[dcFe] Provide specific references for “Conventional
models” in Figure 7.
We will add the following reference: Kim et al. [14].
[besY] As shown in Table 1, CMM already senses the
ROTX feature pattern. It is not fair to compare CMM
with previous detectors on the ROTX-MP dataset.
Kmode (Eq.10) values in Table 1 are depicted in a conse-
quential perspective, i.e., what value will Kmode obtain “if
ROTX is given as input?”. This does not mean that CMM
senses ROTX pattern to determine Kmode. To make this

clear, we point out that our training objective (Eq.11) with
respect to Kmode is based on sensing the modality discrep-
ancy (whether ∆πR and ∆πT have the same value or not),
and not ROTX.
[besY] The terms of ROTO, RXTO, and ROTX should
be explained at the very beginning of the paper.
We will move the footnote regarding terms to the abstract.
[besY] How many neural networks are contained in
CMM? Are they trained jointly or separately?
CMM jointly trains three sub-networks (two uni-modal, one
multi-modal) sharing the same RPN and the head network.
[besY] What is the computational cost of CMM? Is the
inference burden higher than the previous method?
For CMM, the inference speed is 0.11 (s) per image, and the
number of parameters is 99.5M. The baseline model Kim et
al. [14] shows 0.09 (s) and 71.7M, respectively.
[besY] Does the performance gain mainly from the de-
signed CMM framework or extra computational cost?
The performance gain is from learning causality, especially
the switchable total indirect effect (sTIE) we proposed. Ta-
ble 3 and the supplementary Figures 1-4 demonstrate the
effectiveness of learning sTIE.
[besY] How do you fuse the RGB and T image in CMM?
RGB and T features are extracted from each encoder, and
mid-fused by concatenating them inside the network.
[besY] The backbones of CMM and previous works are
diverse, which should be debiased for a fair comparison.
We used the same Resnet-50 for CMM and the comparison
methods [14,40,19] (same as original papers).
[vqAR] In ablation studies, it seems unreasonable that
MR becomes worse when TE+TIE is added to baseline.
TE+TIE performs counterfactual intervention for all test
cases. However, for ROTO data in which RGB and T both
perform well, subtracting the thermal direct effect results
in low confidence scores. Such effects make TE+TIE have
worse MR on general datasets (KAIST, CVC-14, and FLIR)
that largely contain ROTO data.
[vqAR] The model based only on RGB data achieves a
good AP on the ROTX-MP dataset. Is the ROTX-MP
dataset largely influenced by RGB rather than both?
Yes. ROTX-MP is largely influenced by RGB, rather than
both, i.e., complementary to existing RGBT datasets in
which thermal is more influential. Thus, models using only
RGB can perform well. RGBT models, ideally, should be
able to perform well on ROTX-MP based on their RGB sig-
nals. But in practice, they learn modality biases toward ther-
mal, making them vulnerable to ROTX data. ROTX-MP is
proposed to evaluate such vulnerabilities. CMM leverages
causality to resolve this issue (Table 4) and retains the ad-
vantages of the RGBT models (Table 2).
(Additional References) [a] Fusion of multispectral data
through illumination-aware deep neural networks for pedes-
trian detection. Information Fusion, 2019.
[b] Multimodal object detection via probabilistic ensem-
bling. ECCV, 2022.
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Figure 2. Visualized examples of multispectral pedestrian detection on ROTX data. The table on the right indicates each value for TE,
NDE, sTIE, and confidence scores. We compare the conventional model and CMM (ours).



Figure 3. Visualized examples of multispectral pedestrian detection on ROTX data. The table on the right indicates each value for TE,
NDE, sTIE, and confidence scores. We compare the conventional model and CMM (ours).



Figure 4. Visualized examples of multispectral pedestrian detection on ROTO data. The table on the right indicates each value for TE,
NDE, sTIE, and confidence scores. We compare the conventional model and CMM (ours).



Figure 5. Visualized examples of multispectral pedestrian detection on RXTO data. The table on the right indicates each value for TE,
NDE, sTIE, and confidence scores. We compare the conventional model and CMM (ours).
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Figure 6. Failure cases of CMM due to occlusion.
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