
A. Experimental Setup

Implementation details We adopt PyTorch [31] to implement FedACG and the other baselines. We follow the evaluation
protocol of [1] and [45]. For local updates, we use the SGD optimizer with a learning rate of 0.1 for all approaches on the
three benchmarks. We apply no momentum to the local SGD, but incorporate the weight decay of 0.001 to prevent overfitting.
We also employ gradient clipping to increase the stability of the algorithms.

For the experiments on CIFAR-10 and CIFAR-100, we choose 5 as the number of local training epochs (50 iterations).
We set the batch size of the local update to 50 and 10 for the 100 and 500 client participation, respectively. The learning rate
decay parameter of each algorithm is selected from {0.995, 0.998, 1} to achieve the best performance. The global learning
rate is set to 1, except for FedAdam, which is set to 0.01.

For the experiments on Tiny-ImageNet, we match the total local iterations of local updates with other benchmarks by
setting the batch size of local updates as 100 and 20 for the 100 and 500 client participation, respectively.

Hyperparameter selection To reproduce other compared algorithms, we primarily follow the configurations outlined in
the original papers, adjusting the parameters only when it leads to improved performance. Specifically, ↵ is chosen from
{0.1, 0.3, 0.5} in FedCM, {0.001, 0.01, 0.1} in FedDyn, and is set to 0.01 in FedDC. ⌧ in FedADAM is fixed at 0.001, while
µ in MOON is set to 1. For �, in FedAvgM, choices are from {0.4, 0.6, 0.8}; in FedProx and FedACG, from {0.1, 0.01,
0.001}. In FedProx, FedNTD, and FedDecorr, � is set to 0.001, 0.3, and 0.01, respectively. Finally, � in FedACG is selected
from {0.8, 0.85, 0.9}.

B. Additional Experiments

B.1. Additional analysis for the effect of accelerated client gradient

FedACG uses a lookahead model, ✓t�1 + �mt�1, to start local training. This helps clients match their local solutions with
the global loss, ensuring consistent updates. We observe more empirical evidence that supports our claim.

Figure A shows the convergence curves of FedACG and FedAvgM on CIFAR-10 in the moderate-scale setting without
smoothing. For the experiments, we set the momentum coefficient to 0.85 for both algorithms. We observe that FedACG
consistently outperforms FedAvgM and has a smaller accuracy variation throughout the training procedure. Specifically,
when we compute the average squared difference between the accuracy at time step t without smoothing (Acct) and the ac-
curacy given by the simple moving average (AcctSMA) over 1,000 rounds of communication, i.e., 1

T

PT�1
t=0 (Acct�AcctSMA)

2,
the differences are 2.26 and 10.30 for FedACG and FedAvgM, respectively. We believe that this is partly because the pro-
posed accelerated gradient allows each client’s update to compensate for the potential noise in momentum, which is possible
because the local updates start from the anticipated point, ✓t�1 + �mt�1.

Figure A. Training curves of FedACG and FedAvgM on CIFAR-10 in a moderate-scale setting without smoothing.

B.2. FedACG with other local objectives

In Table A, we incorporate accelerated client gradient into a client-side optimization technique, FedMLB [19], FedLC [47],
and FedDecorr [36] to test its benefits. ”+ACG” means adopting the proposed accelerated client gradient. It shows that the
momentum-integrated initialization helps client-side optimization approaches achieve significant improvements without any
additional communication costs.



Table A. Results of incorporating accelerated client gradient (ACG) into client-side optimization techniques on CIFAR-100 and Tiny-
ImageNet under non-i.i.d. settings.

(a) 100 clients, 5% participation, Dirichlet (0.3)

Method
CIFAR-100 Tiny-ImageNet

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 47% 55% 500R 1000R 35% 38%

FedMLB [19] 47.39 54.58 488 1000+ 37.20 40.16 414 539
FedMLB + ACG 61.32 65.67 216 316 46.11 50.54 205 260

FedLC [47] 42.74 47.23 980 1000+ 35.03 35.95 500 1000+
FedLC + ACG 57.18 62.09 239 420 43.43 44.57 187 268

FedDecorr [36] 43.52 49.17 767 1000+ 33.40 34.86 1000+ 1000+
FedDecorr + ACG 57.95 63.02 218 380 43.09 44.52 241 304

(b) 500 clients, 2% participation, Dirichlet (0.3)

Method
CIFAR-100 Tiny-ImageNet

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 36% 40% 500R 1000R 24% 30%

FedMLB [19] 32.30 42.61 642 800 28.39 33.67 384 489
FedMLB + ACG 41.10 55.27 402 479 35.92 43.85 209 313

FedLC [47] 29.58 36.78 936 1000+ 22.14 26.83 676 1000+
FedLC + ACG 35.87 43.51 503 675 29.13 33.17 263 557

FedDecorr [36] 30.56 38.20 850 1000+ 24.34 30.28 499 959
FedDecorr + ACG 41.18 49.93 367 473 29.24 34.71 290 540

B.3. Evaluation on Various Data Heterogeneity

Tables B and C show that FedACG also matches or outperforms the performance of competitive methods when data hetero-
geneity is not severe (Dirichlet 0.6) or very low (i.i.d.) on CIFAR-10 and CIFAR-100 in most cases.



Table B. Results with Dirichlet (0.6) data on CIFAR-10 and CIFAR-100 for two different settings.

(a) Dirichlet (0.6), 100 clients, 5% participation

Method
CIFAR-10 CIFAR-100

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 81% 87% 500R 1000R 50% 56%

FedAvg [27] 80.56 85.97 520 1000+ 43.91 49.18 1000+ 1000+
FedProx [25] 80.39 85.53 524 1000+ 43.15 48.45 1000+ 1000+
FedAvgM [14] 84.65 87.96 355 811 46.66 52.49 735 1000+
FedADAM [33] 80.25 83.52 526 1000+ 45.95 51.63 778 1000+
FedDyn [1] 87.23 89.49 310 487 50.51 56.78 488 886
MOON [23] 84.95 87.99 272 728 55.76 61.42 338 527
FedCM† [45] 82.84 86.64 385 1000+ 53.75 60.48 331 468
FedMLB [19] 79.85 85.98 574 1000+ 49.31 56.70 526 925
FedLC [47] 80.40 85.48 559 1000+ 43.99 48.92 1000+ 1000+
FedNTD [22] 81.2 86.44 498 1000+ 44.26 50.34 916 1000+
FedDC‡ [10] 88.05 89.58 270 437 56.00 60.58 347 491
FedDecorr [36] 81.01 85.19 500 1000+ 43.64 49.03 1000+ 1000+
FedACG (ours) 87.57 90.56 218 453 58.82 63.88 243 396

(b) Dirichlet (0.6), 500 clients, 2% participation

Method
CIFAR-10 CIFAR-100

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 69% 80% 500R 1000R 32% 41%

FedAvg [27] 62.79 75.17 671 1000+ 29.41 36.62 648 1000+
FedProx [25] 62.48 75.10 688 1000+ 29.62 36.70 647 1000+
FedAvgM [14] 69.10 80.26 498 981 32.78 41.93 468 942
FedADAM [33] 68.48 78.92 535 1000+ 37.57 48.29 341 624
FedDyn [1] 68.53 80.33 513 983 32.06 43.28 498 917
MOON [23] 74.29 80.66 368 921 31.64 41.61 515 931
FedCM† [45] 71.42 78.94 429 1000+ 26.82 39.78 714 1000+
FedMLB [19] 62.60 74.36 729 1000+ 33.79 43.52 432 831
FedLC [47] 62.77 73.56 694 1000+ 30.07 36.97 620 1000+
FedNTD [22] 61.9 74.38 717 1000+ 28.85 35.88 691 1000+
FedDC‡ [10] 77.74 86.32 324 596 34.24 44.69 444 825
FedDecorr [36] 63.63 74.89 658 1000+ 29.99 37.72 615 1000+
FedACG (ours) 78.49 85.28 289 565 39.61 49.70 304 540



Table C. Results with i.i.d. data on CIFAR-10 and CIFAR-100 for two different settings.

(a) i.i.d., 100 clients, 5% participation

Method
CIFAR-10 CIFAR-100

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 82% 89% 500R 1000R 52% 58%

FedAvg [27] 85.28 88.69 372 1000+ 43.96 48.20 1000+ 1000+
FedProx [25] 84.79 87.99 384 1000+ 43.57 47.75 1000+ 1000+
FedAvgM [14] 87.67 89.96 258 375 47.43 52.83 880 1000+
FedADAM [33] 85.29 87.97 286 1000+ 52.23 57.73 496 1000+
FedDyn [1] 89.19 90.70 269 492 50.37 56.88 592 898
MOON [23] 88.24 89.96 207 628 58.50 64.73 311 484
FedCM† [45] 87.38 89.65 182 782 57.10 62.48 266 466
FedMLB [19] 86.32 89.65 359 784 50.12 56.40 586 1000+
FedLC [47] 84.48 88.26 393 1000+ 43.84 46.70 1000+ 1000+
FedNTD [22] 85.68 89.43 367 870 44.93 50.51 1000+ 1000+
FedDC‡ [10] 90.07 90.80 194 425 55.17 61.00 400 633
FedDecorr [36] 85.21 88.17 364 1000+ 45.16 49.16 1000+ 1000+
FedACG (ours) 90.57 92.29 157 354 59.82 64.08 244 342

(b) i.i.d., 500 clients, 2% participation

Method
CIFAR-10 CIFAR-100

Acc. (%, ") Rounds (#) Acc. (%, ") Rounds (#)
500R 1000R 75% 83% 500R 1000R 33% 42%

FedAvg [27] 68.70 78.21 652 1000+ 30.71 37.85 664 1000+
FedProx [25] 68.74 77.96 643 1000+ 30.11 37.13 685 1000+
FedAvgM [14] 74.34 83.64 523 943 33.54 42.55 479 971
FedADAM [33] 75.32 84.01 491 915 38.74 48.94 328 636
FedDyn [1] 74.81 84.71 398 823 33.20 42.91 492 936
MOON [23] 69.86 81.89 586 1000+ 28.82 41.26 649 1000+
FedCM† [45] 77.84 83.26 491 959 29.59 42.04 653 991
FedMLB [19] 62.60 80.16 729 1000+ 34.56 44.95 440 817
FedLC [47] 68.92 79.09 727 1000+ 29.91 37.18 677 1000+
FedNTD [22] 68.61 80.65 706 1000+ 30.04 36.63 706 1000+
FedDC‡ [10] 80.87 87.53 358 574 33.93 45.80 476 817
FedDecorr [36] 68.12 77.39 802 1000+ 30.41 37.53 585 1000+
FedACG (ours) 80.15 87.47 316 578 41.16 49.10 299 525



C. Convergence Plot

C.1. Evaluation on various federated learning scenarios

Figure B to Figure D show the convergence of FedACG and the compared algorithms on CIFAR-10, CIFAR-100, and Tiny-
ImageNet for various federated learning settings: varying the number of total clients, participation rates, data heterogeneity.
FedACG continuously matches or exceeds the performance of the most powerful of our competitors in most learning sections.

Figure E shows the convergence plots under massive clients with lower participation rates. The result shows that FedACG
takes the lead in most learning sections, which also demonstrates the effectiveness of FedACG.

(a) Dirichlet (0.3), 100 clients, 5% participation (b) Dirichlet (0.3), 500 clients, 2% participation

(c) Dirichlet (0.6), 100 clients, 5% participation (d) Dirichlet (0.6), 500 clients, 2% participation

(e) i.i.d., 100 clients, 5% participation (f) i.i.d., 500 clients, 2% participation

Figure B. The convergence plots of FedACG and the baselines on CIFAR-10 with different federated learning scenarios.



(a) Dirichlet (0.3), 100 clients, 5% participation (b) Dirichlet (0.3), 500 clients, 2% participation

(c) Dirichlet (0.6), 100 clients, 5% participation (d) Dirichlet (0.6), 500 clients, 2% participation

(e) i.i.d., 100 clients, 5% participation (f) i.i.d., 500 clients, 2% participation

Figure C. The convergence plots of FedACG and the baselines on CIFAR-100 with different federated learning scenarios.

(a) Dirichlet (0.3), 100 clients, 5% participation (b) Dirichlet (0.3), 500 clients, 2% participation

Figure D. The convergence plots of FedACG and the baselines on Tiny-ImageNet with different federated learning scenarios.



(a) CIFAR-10 (b) CIFAR-100

Figure E. The convergence plots of FedACG and the baselines when the participation rate is low (1%) for 500 clients on CIFAR-10 and
CIFAR-100. The Dirichlet parameter is commonly set to 0.3 for the experiments.

C.2. Evaluation on dynamic client set

Figure F shows a convergence plot when the entire client’s pool changes during training. The result shows that FedACG
outperforms the baselines in most learning sections. Note that FedDyn shows worse performance than FedACG in the overall
section of learning. This is partly because it needs to store local states for local training in each client, which requires a kind
of warm-up period for newly participating clients to contain useful information. In contrast, FedACG, which is free from
these restrictions, shows strength in a realistic federated learning scenario where the pool of entire clients changes during
training.

Figure F. The convergence plots of FedACG and other compared methods on CIFAR-100 when the client set changes over dynamically:
we sample 250 clients out of 500 clients as a candidate clients set at every 100 rounds over 10 stages on Dirichlet (0.3) split. 10 clients out
of the sampled client set participate for the local training for each communication round.

D. Convergence of FedACG

We now present the theoretical convergence result of FedACG. We first state a few assumptions for the local loss functions
Fi(·), which are commonly used in several previous works on federated optimization [15, 33, 45]. First, the local function
Fi(·) is assumed to be L-smooth for all Ci 2 {C1, . . . , CN}, i.e.,

krFi(x)�rFi(y)k  Lkx� yk 8x, y. (2)

This also implies

Fi(y)  Fi(x) + hrFi(x), y � xi+
L

2
ky � xk2. (3)

Second, we assume the stochastic gradient of the local loss function rfi(x) := rFi(x;Di) is unbiased and possesses a
bounded variance, i.e. EDi [krfi(x) � rFi(x)k2]  �2. Third, we assume the average norm of local gradients is bounded



by a function of the global gradient magnitude as 1
N

PN
i=1 krFi(x)k

2
 �2

g + B2
krF(x)k2, where �g � 0 and B � 1.

Based on the above assumptions, we derive the following asymptotic convergence bound of FedACG.

D.1. Preliminary Lemmas

We present several technical lemmas that are useful for subsequent proofs.

Lemma 1 (relaxed triangle inequality). Let {v1, . . . , v⌧} be ⌧ vectors in Rd. Then the following are true: (1) kvi + vjk2 

(1 + a)kvik2 + (1 + 1
a )kvjk

2 for any a > 0, and (2) k
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2
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2.

Lemma 2 (sub-linear convergence rate). For every non-negative sequence {dr�1}r�1 and any parameters ⌘max � 0, c � 0,
R � 0, there exists a constant step-size ⌘  ⌘max and weights wr = 1 such that,
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Proof. Unrolling the sum, we can simplify
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The lemma can be established through the adjustment of ⌘. We consider the following two cases based on the magnitudes of
R and ⌘max:
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Lemma 3 (separating mean and variance). Given a set of ⌧ random variables {x1, . . . ,x⌧} in Rd, where E[xi|xi�1, . . .x1] =
⇠i and E[kxi � ⇠ik2]  �2 represent their conditional mean and variance, respectively, the variables {xi � ⇠i} form a
martingale difference sequence. Based on this setup, the following holds
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The first inequality comes from the relaxed triangle inequality and the following equality holds because {xi � ⇠i} forms a
martingale difference sequence. ⇤



D.2. Convergence of FedACG for non-convex functions

Theorem 1. (Convergence for non-convex functions) Suppose that local functions {Fi}
N
i=1 are non-convex and L-smooth.
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where the first inequality holds because ha, bi  1
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2+kbk2), while the second inequality follows from the L-smoothness.
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where the first inequality holds because ha, bi  1
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Substituting Eq. (6) and Eq. (7) into Eq. (5) yields
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By rearranging the inequality above, we have
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Summing the above inequality for t 2 {1, . . . , T} yields
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By applying Lemma 4, Lemma 5, and Lemma 6, we have
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If ⌘ 
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64KL(B2+1) , we can rewrite the above inequality as follows
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Let ⌘̃ = ⌘K
4(1��)2 . By dividing both sides by 1� �, we have
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Dividing both side by ⌘̃T yields
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Now we get the desired rate by applying Lemma 2, which finishes the proof. ⇤
Lemma 4. Algorithm 1 satisfies
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By summing the above inequality for t 2 {0, . . . , T � 1}, we have
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which finishes the proof. ⇤
Lemma 5. For all t � 1, Algorithm 1 satisfies
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where ✓ti,0 denotes the initial point for the local model of the i-th client, i.e., ✓ti,0 = �t�1.



Proof. By applying Lemma 3, we have
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We note that
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where, in the fourth inequality, the improvement of (1� |St|
N ) follows from sampling the active client set St without replace-

ment at the t-th communication round. The last inequality holds because the average norm of local gradients is bounded as
1
N
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2
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krF(x)k2, which concludes the proof. ⇤

Lemma 6. For all t � 1, we have
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where the first inequality follows because the stochastic gradient possesses a bounded variance, while the second inequality
follows from the Lemma 1.

We note that

E[krFi

�
✓ti,k�1

�
k
2] = E[krFi

�
✓ti,k�1

�
�rFi

�
✓ti,0

�
+rFi

�
✓ti,0

�
k
2]

 2E[krFi

�
✓ti,k�1

�
�rFi

�
✓ti,0

�
k
2] + 2E[krFi

�
✓ti,0

�
k
2]

 2L2E[k✓ti,k�1 � ✓ti,0k
2] + 2E[krFi

�
✓ti,0

�
k
2]. (10)

By substituting Eq. (10) into Eq. (9), we have
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By unrolling the recursion, we have
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By the definitions in Eq. (8), we have
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where the inequality follows due to the assumption that the average norm of the local gradients is bounded, i.e.,
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krF(x)k2, which completes the proof. ⇤


