
Appendix
A. Details of 4D datasets
ACDC. The ACDC dataset features an average of
10.02±2.20 frames between the end-systolic and end-
diastolic phases in the training set, with the test set present-
ing an average of 8.80±2.48 frames. All cardiac MRI scans
have been uniformly resized. Following this resizing pro-
cess, min-max scaling is applied to ensure consistent scal-
ing across all scans.

4D-Lung. In the case of the 4D-lung dataset, the models
are trained to predict the four intermediate frames (10%,
20%, 30%, 40%) between the end-inspiratory (0%) and
end-expiratory (50%) phases. Only CT images captured us-
ing kilovoltage energy are included in the study due to
their superior image quality. Each lung CT scan is ad-
justed to the lung window range (-1400 to +200 Hounsfield
unit) [15] and subjected to centering and min-max scaling.
Subsequently, bed removal is performed using the follow-
ing method: pixels exceeding a certain threshold (-500 HU
in this study) are assigned a value of 1, while all other pix-
els are set to 0, creating a binarized map. The binarized map
undergoes erosion/dilation [62] to identify the most promi-
nent body contour mask. By getting the resulting body con-
tour mask to the corresponding voxel region of the given
images, a bed-removed CT image is obtained. All the lung
CT images are resized to 128× 128× 128.

B. Details of baseline models
The following three unsupervised models and two super-
vised models are used as the baseline models for our
main result: VoxelMorph [3], TransMorph [10], Fourier-
Net+ [24], R2Net [27], IDIR [69], DDM [30] for unsuper-
vised models, and SVIN [16], MPVF [68] for supervised
models. To the best of our knowledge, this selection cov-
ers the most pertinent and all current baseline models in the
field, providing a comprehensive benchmark for our study.

Unsupervised models. The VoxelMorph employs the ex-
act same model architecture as our flow calculation model,
as discussed in Appendix C.1. For TransMorph, we follow
the TransMorph-Large framework from the original paper.
In the case of Fourier-Net+, R2Net, IDIR, and DDM, we
utilize the default architecture outlined in the original pa-
per.

Supervised models. In our study involving SVIN, we ad-
hered to the official architecture as described in the founda-
tional paper. For MPVF, we applied the architecture speci-
fied for the ACDC dataset, as outlined in the original pub-
lication. However, our experience with the 4D-lung dataset
presented unique challenges. Despite the original study us-
ing a distinct lung preprocessing method, which resulted in
larger data sizes, and reporting successful execution on a
V100 GPU with 32GB of memory, our attempts to run their
code on an A6000 GPU with 48GB of memory encountered
memory issues. Upon contacting the authors, we learned
that no official code was available for the 4D-lung dataset.
Consequently, we were compelled to arbitrarily modify the
model size to accommodate our 48GB memory constraint.
This entailed reducing the encoder inplanes from [32, 64,
128] to [8, 16, 32], decreasing the number of ViT heads
from 4 to 2, lowering the ViT num classes from 1000 to
300, and diminishing the hidden dimension from 256 to
64. Please note that although we reduced the model to fit
a 48GB memory constraint, our measurements were con-
ducted on a model size larger than the original model’s
32GB specification.



(a) Architecture of flow calculation model

(b) Architecture of reconstruction model

Figure 6. The architecture of the flow calculation and reconstruction models consisting of encoder and decoder layers. The encoder layers
are represented by gray boxes, while the decoder layers are represented by blue boxes. The numbers associated with each box indicate the
number of features in the corresponding convolutional filter.

C. UVI-Net details

C.1. Flow calculation model

The flow calculation model follows the network architecture
illustrated in Fig. 6a, which is based on VoxelMorph [3].
The model processes a single input by combining the im-
ages I0 and I1 into a 2-channel 3D image. Then, it out-
puts 3-channel 3D flows, where each channel represents the
displacement along each dimension. The flow model incor-
porates 3D convolutions in both the encoder and decoder
stages with a kernel size of 3. LeakyReLU layer with a neg-
ative slope of 0.2 follows each convolutional operation.

In the encoder, strided convolutions with stride size 2
are utilized to reduce the spatial dimensions by half at each
layer. Conversely, the decoding involves a combination of
upsampling, convolutions, and concatenation of skip con-
nections. As a result, the model outputs the flows ϕ0→1 and
ϕ1→0, each warping I0 to resemble I1 and I1 to resemble
I0, respectively.

C.2. Reconstruction model

Fig. 6b describes the architecture of the reconstruction
model, based on 3D-UNet [55]. We employ a single im-
age Îcand0→t ⊕ Îcand1→t , which is a weighted sum of two can-
didate images, in conjunction with three levels of multi-
resolution features, each possessing channel dimensions of
4, 8, and 16, respectively. The model’s first encoder layer re-
ceives an input composed of two channel-wise concatenated
warped features and an image Îcand0→t ⊕ Îcand1→t . Advancing to
the subsequent layers, the model concatenates features of

half and quarter resolutions at the second and third encoder
layers. Thereafter, the model returns the image difference
∆Î , which will be added to the input to acquire the final
estimated image Ît. The architecture of the reconstruction
model follows details similar to those of the flow calcula-
tion model.

C.3. Additional training details

In our training process, we employ the Adam optimizer [34]
with a learning rate 2×10−4 for 200 epochs, configuring the
batch size as 1. For instance-specific optimization, models
are fine-tuned for 100 epochs on the given test sample while
maintaining the same experimental settings as in the previ-
ous training. The results are presented in a straightforward
setup, with all loss coefficients uniformly set to 1.



Figure 7. Visualization of data augmentation using our approach. Given I0, I1 and s0, s1, we report the generated image and label when
t = 0.3, 0.7. This is a visualization based on data from the OASIS dataset.

D. Downstream Task
D.1. Method

We propose an effective 3D data augmentation technique
based on our interpolation framework. To extend the inter-
polation task to 3D data augmentation, we generate new
data by inputting randomly selected pairs of 3D images
from the training dataset that share common types of seg-
mentation labels. Here, we utilize time t as an interpolation
degree for augmentation. Furthermore, inspired by previ-
ous works [3, 10], we incorporate the segmentation labels as
supplementary information to enrich the augmented dataset.

Let s0 and s1 represent the organ segmentation of I0 and
I1. When calculating flow fields, we only use I0 and I1,
excluding segmentation labels. Using the calculated flows,
we calculate ŝcandt1→0, ŝcandt2→0, ŝcandt2→1 and ŝcandt3→1 similar to
the procedure of image. Finally, we ensure that ŝcandt1→0 and
scandt2→0 have cycle consistency between s0, while scandt2→1 and
scandt2→1 have cycle consistency with s1.

When labels are used during training, we expand the seg-
mentation map into K binary masks to enable backpropa-
gation, where K represents the total number of labels in
the segmentation maps. Since Dice score [13] is commonly
used to quantify optical flow performance [3, 10], we di-
rectly minimized the Dice loss [44].

D.2. Experimental setting

Datasets. For the segmentation dataset for augmentation,
three 3D medical datasets are used. OASIS [20] is a brain
dataset comprising 414 T1-weighted MRI scans and the
corresponding segmentation labels for 36 organs, including
the background label released from VoxelMorph [3]. IXI 1

is another brain MRI dataset with segmentation labels for 31
organs, including the background [10] released from Trans-
Morph [10]. All the brain MRI scans are skull-stripped and
resized to 128×128×128. In both datasets, the first 20 sam-
ples are used for training, while the rest are included in the

1https://brain-development.org/ixi-dataset/

Method OASIS IXI MSD-Heart

Vanilla 0.821 0.801 0.755
VM [3] 0.825 0.813 0.803
TM [10] 0.831 0.810 0.773
Fourier-Net+ [24] 0.822 0.802 0.809
R2Net [27] 0.621 0.688 0.789
DDM [30] 0.826 0.806 0.818
Ours (w/o inst opt.) 0.843 0.818 0.831

Table 3. Segmentation results on three datasets. Experiments are
conducted by adding augmentation data at a scale of 10x to the
real data. Dice score is used as the averaged performance metric
for three segmentation models.

test set. Lastly, MSD-Heart [60] is an MRI dataset with one
label (excluding background) and resized to 128×128×64.
Since MSD-Heart has only 20 data, we use 10 data for train-
ing and 10 for testing with background loss.

Segmentation models. To perform 3D segmentation, we
utilize three publicly available models from MONAI pack-
age2: 3D-UNet [55], VNet [1], and UNETR [18]. The seg-
mentation models are trained for 15,000 iteration steps the
final Dice score at the last iteration is recorded. Adam opti-
mizer [34] with an initial learning rate 1×10−4 is used, and
batch size is set to 1. For loss function, the weighted sum of
Dice [44] and Cross Entropy [57] losses is used. For aug-
mented data generation, which expands the original dataset
size by a factor of ten, we employed alpha sampling ratios
of t = 0.1, 0.2, . . . , 1.0.

D.3. Result

We have successfully generated pairs of images and labels,
as illustrated in Fig. 7. Detailed results presented in Tab. 3
reveal that our approach consistently outperforms compet-
ing methods, delivering superior performance across a di-
verse range of conditions. This includes variations in dataset
types and the use of different segmentation models, under-
scoring the robustness and versatility of our methodology.

2https://monai.io/



Dataset Loss function PSNR ↑ NCC ↑ SSIM ↑ NMSE ↓ LPIPS ↓Lwarp Limage Lreg

Cardiac
✓ ✓ 33.01 0.563 0.975 2.679 1.076
✓ ✓ 33.16 0.562 0.975 2.691 1.194
✓ ✓ ✓ 33.57 0.565 0.977 2.409 1.134

Table 4. Ablation results of loss terms. Limage and Lreg are components of Lcyc. NMSE and LPIPS are written in units of 10−2.

Dataset Limage PSNR ↑ NCC ↑ SSIM ↑ NMSE ↓ LPIPS ↓
NCC ρ

Cardiac
✓ 33.55 0.565 0.977 2.406 1.189

✓ 33.50 0.565 0.977 2.437 1.316
✓ ✓ 33.57 0.565 0.977 2.409 1.134

Table 5. Ablation results of loss terms. NMSE and LPIPS are written in units of 10−2. Limage is used for warping loss and cyclic loss, and
ρ stands for Charbonnier loss.

Dataset Feature extractor PSNR ↑ NCC ↑ SSIM ↑ NMSE ↓ LPIPS ↓

Cardiac

None 33.53 0.565 0.977 2.410 1.163
Edge detection 33.49 0.565 0.977 2.434 1.101

U-Net 33.50 0.565 0.977 2.445 1.151
Single-scale CNN 33.49 0.564 0.977 2.448 1.116
Multi-scale CNN 33.57 0.565 0.977 2.409 1.134

Table 6. The ablation results for the feature extraction module. Extract type “None” indicates not using feature extraction.

E. Additional experimental results

We further substantiate our methodology through a series
of ablation studies designed to broaden the empirical re-
sults. All reported outcomes represent the values derived
from three distinct experimental runs.

E.1. Ablation studies of loss term

The ablation results of loss terms conducted on the ACDC
dataset are summarized in Tab. 4 and Tab. 5. As indicated in
Tab. 4, integrating each component of cyclic loss, which are
Limage and Lreg , significantly improves the performance of
intermediate image synthesis. Furthermore, Tab. 5 demon-
strates that the combined application of NCC and Charbon-
nier losses leads to a performance improvement compared
to the application of each loss term independently.

E.2. Ablation studies of feature extractor model

The Tab. 6 presents the results of ablation studies on the
feature extraction model, conducted on the ACDC dataset.
In our comparative analysis, we demonstrate that our fea-
ture extraction methodology exhibits superior performance
compared to scenarios where no feature extraction model is
implemented. Additionally, we explored alternative meth-
ods of feature extraction, including: (1) using the Canny
edge detector, (2) employing a simple U-Net architecture,
and (3) utilizing a CNN module with single-scale warped
images. Our approach outperformed other feature extraction
modules in overall metric aspects. Moreover, some met-
rics in those modules showed performance worse than cases
where no feature extraction was applied.

E.3. Additional qualitative results

We present a series of additional qualitative results in Fig. 8.
Our approach demonstrate the superior results against var-
ious baseline methods. This not only underscores our
method’s enhanced alignment and coordination but also
showcases its ability to generate outcomes that are more
accurate and realistic. The visual evidence presented here
plays a crucial role in substantiating the quantitative metrics
we have reported, offering a holistic view of our model’s ca-
pabilities in real-world scenarios.

E.4. Visualization for extrapolation

The Fig. 9 visualizes the extrapolation results, particularly
for Î−0.5 and Î1.5, along with the corresponding optical flow
and source images I0 and I1. These images represent the
most extreme cases of extrapolation in our study. To ensure
the credibility and real-world applicability of the results,
they have been rigorously examined by a board-certified ra-
diation oncologist. The evaluation focused on determining
whether the extrapolated images exhibit any excessive or
unnatural changes that could undermine their practical util-
ity. This ensures that using extrapolation in our method does
not present significant complications.

E.5. Visualization results for sequential 4D images

Fig. 10 visualizes the prediction results over time for the en-
tire 4D sequence. As the baseline results, we introduce the
interpolated images through the application of linear scal-
ing to VoxelMorph, which serves as the backbone registra-
tion model within our framework. It can be observed that
our approach more effectively captures fine-grained details
and predicts the ground truth compared to the baseline.



Figure 8. Additional visualization examples demonstrating our proposed method’s effectiveness for 4D interpolation. The model marked
with an ‘*’ is trained exclusively on the test set, while models marked with ‘(SL)’ are trained using supervised learning. Every third row
shows the difference between each model and the ground truth image, where greater pixel value indicates a larger divergence from the
ground truth.



Figure 9. Extrapolation examples for the cardiac and lung datasets. The optical flows presented below pertain to the x-axis direction.



(a) Example of the cardiac dataset.

(b) Example of the lung dataset.

Figure 10. Qualitative results on the prediction of 4D image series over time. For lung images, we present the results in high resolution by
upsampling the size of the registration field by a factor of four. In the provided figure, the first and last columns represent the ground truth
images. Our model demonstrates a superior ability to capture the fine-grained structures like left main bronchus (indicated by red arrows)
compared to the baseline.


