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This supplementary document provides additional de-
tails for the proposed method and a gallery of results that
includes more visual comparisons with other methods Ac-
companying supplementary video provides visualization of
our iterative optimization.

1. Normal Maps Captured from a Perspective
Camera

For simplicity, in the main paper, our formulations for the
normal integration and the iterative optimization assume
that the normal map has been captured with an orthographic
camera. When the normal map is captured with a perspec-
tive camera, a correct depth map can be recovered by apply-
ing minor modifications to the original formulation.

We employ the formulation for normal integration using
the perspective camera in [1]. Given the normal map cap-
tured with a perspective camera of focal length f and image
center coordinates (c,, ¢, ), the relation between the gradi-
ent of the depth map d and the surface normal n is

Vd=g (1)
where ~
d =logd, 2)
~ nm
g=—1, 3
N,

and the z component of the normal n, is adjusted to form
7, according to image coordinate (u, v):

Ny = ng(u —cy) +ny(v—cy) + 1. f. )

For a more detailed explanation of the derivation of this for-
mulation, refer to [1].

Using this result, the normal integration for the normal
map captured from a perspective camera can be solved sim-
ilarly to the orthogonal case by introducing minor changes.

*Equal contribution.

First, the z component of the input normal is modified us-
ing Eq. (4). Then, the log depth map d is acquired by per-
forming the normal integration for the orthographic case us-
ing the modified normal as the input. Finally, the resulting
depth map is obtained with exponential.

Iterative optimization Based on the relation between the
depth and the gradient in Eq. (1), our proposed iterative op-
timization method for the discontinuity and the depth map
is modified accordingly. In the perspective case, the data
term Fyuq = F, + E, is defined as

Ey(gd) = Y [i-(e)(Ded —g(e)|*, ()

ecé&,

Eu(g,d) =) lal(e)(Ded —g'(e))I*,  (6)

e€&,

and subsequently, the energy Ey;s. becomes

Buise(g, d,w) = Y we[it(e)(Ded — g'(€)||*, (7)
ec&,

where the value 7, is simply a constant 7/, = f. Note
that this value is the result of Eq. (4) when the normal is
(ng,ny,n.) = (0,0,1).

2. Results for Various Inputs

Inputs with noise and hole Fig. 1 presents results for
normal maps with noise. Our method is robust to noise
because our method uses combination of explicit gradient
filtering and least-squares method; when the gradient filter-
ing produces faulty gradient edit g’ due to noise, the least-
squares in the depth solving step can heal the damage. Fig. 2
presents results for normal maps with holes. Our method
robustly handles normal maps containing small holes (top
row) and a large hole (bottom row).
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Figure 1. Normal integration when zero-mean Gaussian noise with
different standard deviations o is added to gradients. Our method
produces plausible visual results in all three noise levels. Our
method also shows better accuracy than BiNI [1] in terms of mean
absolute depth error (MADE) to the GT depth map.

Inputs with surface details Fig. 3 presents results for two
bas-relief normal maps. Bas-relief contains many subtle
details that introduce discontinuities. Our method handles
such subtle details correctly.

Objects with different surface frequencies In Table 1
of the main paper, for instances with mostly smooth sur-
faces (Bear, Cat, Cow), our results have similar errors to
BiNTI’s. For instances with mid-scale details (Buddah, Har-
vest, Reading), our results have significantly lower errors
than BiNI’s. We show examples and evaluate the errors for
surfaces with fine details in Fig. 3. We visualise results for
different frequencies of teeth in Fig. 4. We obtained bet-
ter or similar results to BiNI [1] in all cases. The comb-
like normal maps contain sparse discontinuities only at the
boundaries of the teeth.

3. Experimental Analysis of Hyperparameters

All examples in our main paper and the supplementary use
the same hyperparameters. Table 1 shows quantitative eval-
uation results for the DiLiGenT dataset with different hy-
perparameters. Parameters except Asor; and Apqrq can stay
fixed as they do not change results notably.

4. Additional Technical Details

GT depth from GT mesh in the main paper’s Fig. 8 GT
mesh is the original 3D mesh from which the input normal
map is rendered. GT depth is the visualization of the depth
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Figure 2. Normal integration results for surfaces with holes. Our
method produces better results than BiNI [1] in terms of mean
absolute depth error (MADE).
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Figure 3. Normal integration results for surfaces with details' 2
Our method produces better visual results capturing subtle GT de-
tails as can be observed with the appearance of shadows. Our
method also produces better results than BiNI [1] in terms of mean
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absolute depth error (MADE).

Figure 4. Our results for comb-like normal maps. The input nor-
mal map for the third column is the same as the input used in
BiNTI’s Fig. 4 [1]. Our method produces correct results for varia-
tions of comb-like normal maps with different frequencies.

map with the same dimension as the rendered normal map,
using each pixel as the vertex.

Time consumption and convergence For the DiLiGeNT
dataset, BiNI took 10 seconds on average to converge, and
additional iterations do not notably enhance the accuracy.
Our method takes 6 seconds on average to reach the same
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Table 1. Quantitative evaluation results for the DiLiGenT dataset
with different hyperparameters. For all examples in our main
paper and the supplementary, we use the hyperparameters k£ =
1000, Asoft = 0.2, Apara = 1.2 (Ours, first row).
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Buddha
Harvest
Potl
Pot2
Reading
Goblet

Ours

(ks Mogts Anard) 045 | 0.67 | 024 0.06 | 2.44 | 0.57 0.19 | 0.15 | 9.02
(100,0.2,1.2) | 0.49 | 0.41 | 0.20 ‘ 0.21 | 294 | 0.60 0.17 | 0.42 | 9.15

(2000,0.2,1.2) | 048 | 0.78 | 0.23 0.10 | 2.98 | 0.62 | 0.20 | 0.16 | 9.00
(100,0.1,1.1) | 0.36 | 1.64 | 0.14 | 0.13 | 4.38 | 0.58 | 0.20 | 0.40 | 9.04

(1000, 0.1, 1.1) | 0.30 | 2.40 | 0.16 | 0.13 | 493 | 0.70 | 0.24 | 0.52 | 7.95
(2000, 0.1, 1.1) | 0.14 | 2.44 | 0.15 | 0.15 | 5.21 | 0.81 | 0.25 | 0.65 | 7.90

level of depth error as BiNI, and produces more accurate
results with additional iterations. Using a fixed number of
iterations N, = 1300, which takes approximately 50
seconds, our method achieves higher accuracy than BiNI
in most cases.

5. Gallery of Results

In Figs. 5, 6, and 7, we provide additional visual compar-
isons to the Poisson method [2] and BiNI [1] using normal
maps in THuman2.0 [3] dataset. For BiNI, we use the hy-
perparameter K = 2 used in the paper. Due to our ex-
plicit representation of the jumps across discontinuities, our
method recovers sparse discontinuities accurately even in
small and subtle jumps, e.g., across wrinkles of clothes and
hair.
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Ground truth Poisson [2] BiNI [1] Ours

Figure 5. Qualitative comparison to previous normal integration methods using a human body dataset.
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Ground truth Poisson [2] BiNI [1] Ours

Figure 6. Qualitative comparison to previous normal integration methods using a human body dataset.
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Figure 7. Qualitative comparison to previous normal integration methods using a human body dataset.
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