
Distilling ODE Solvers of Diffusion Models into Smaller Steps

Supplementary Material

1. Trilemma of Generative Models

Generative models face a trilemma characterized by
three essential components, as outlined by [32]:

1. High-quality samples: Generative models should
demonstrate the capacity to produce high-quality sam-
ples.

2. Mode coverage and sample diversity: They ought to
exhibit mode coverage, ensuring that generated samples
are diverse and encompass various modes within the data
distribution.

3. Fast sampling: Efficient generative models should pos-
sess the ability to generate samples rapidly.

For instance, generative adversarial networks (GANs) [2,
6] excel in generating high-quality samples with just a sin-
gle evaluation of the network. Nevertheless, GANs of-
ten struggle with generating diverse samples, resulting in
poor mode coverage [28, 36]. Conversely, Variational Au-
toencoders (VAEs) [14] and Normalizing Flows [4] are de-
signed to adequately ensure mode coverage but may suf-
fer from low sample quality. Recently, diffusion models
have emerged as a novel class of generative models that can
generate high-quality samples comparable to GANs [3, 26],
while also providing a rich variety of samples. However,
conventional diffusion models often require hundreds to
thousands of network evaluations for sampling, rendering
them computationally expensive in practice. The primary
bottleneck in the sampling process of diffusion models is
closely tied to the number of denoising network evalua-
tions. Consequently, numerous research works have ex-
plored techniques to expedite the sampling process by either
skipping or optimizing sampling steps while maintaining
the quality of generated samples. These techniques can be
broadly classified into two categories: learning-based and
learning-free sampling methods [33] as introduced in the
introduction of the main paper.

2. Noise and Data Prediction Networks

The output of the denoising network should be param-
eterized to estimate the score function referring to the
reverse-time ODE. The score function represents the gra-
dient of the logarithm of the data distribution, indicating the
direction of data with higher likelihood and less noise. One
straightforward approach for the parameterization is to di-
rectly estimate the original data x, in which case the score
function is estimated by calculating the gradient toward the

original data given the current noise level:

∇x log qt(xt) =
xθ(xt, t)− xt

σ2
t

. (1)

Another approach indirectly designs the denoising network
to predict noise ϵ, which represents the residual signal in-
fused in the original sample. In this case, the score function
can be calculated as:

∇x log qt(xt) = −ϵθ(xt, t)

σt
. (2)

While the noise prediction network ϵθ and the data predic-
tion network xθ are theoretically equivalent [11, 13, 19],
they reveal different characteristics during the sampling
process.

Noise prediction network Noise prediction networks
may initially introduce significant discrepancies between
the ground truth noise and the predicted noise [1]. Since
sampling commences with highly noisy samples, the de-
noising network lacks sufficient information to accurately
predict noise [9]. Additionally, the magnitude of correction
required at each timestep is relatively small, necessitating
multiple timesteps to rectify such deviations [19].

Data prediction network Data prediction networks are
known to offer better accuracy in the initial stages of sam-
pling, while the noise prediction networks become prefer-
able in later stages. Predicting data assists the denoising
network in understanding the global structure of the target
sample [19]. Empirical evidence shows that the predicted
data is close to the ground truth at the beginning of the sam-
pling procedure [7, 23]. However, in the later stages when
substantial structures have already been formed and only
minor noise artifacts need to be removed, finer details be-
come challenging to recover [1]. Essentially, the informa-
tion provided by early data prediction becomes less effec-
tive in the later stages of sampling.

Our experiments The difference between data and noise
prediction networks is also evident in the figure of the
main paper, illustrating correlation between denoising out-
puts. Predictions of ϵ in the initial sampling stages ex-
hibit higher correlation with each other than those in later
stages, whereas predictions of x become more correlated in
the later stages compared to the earlier stages. In the case
of noise estimation, a small amount of noise remains in a
sample for the last few timesteps, resulting in detailed and

minor changes to the sample with high variance. In conclu-
sion, different details are modified at each timestep during
the later sampling process.

On the other hand, it is challenging for a x estimator
to predict the original sample from the initial noisy sample.
However, its predictions become more consistent in the later
stages of sampling as the sample becomes less noisy. This
observation aligns with the analysis presented in Benny and
Wolf [1], which indicates that the variance of the x esti-
mator gradually decreases with more sampling steps, while
the variance of the ϵ estimator abruptly increases in the last
phase of sampling.

3. Knowledge distillation in Diffusion Models

Knowledge distillation [8] was initially introduced to
transfer knowledge from a larger model (teacher) to a
smaller one (student), with the student model being trained
to imitate the output of the teacher model. This concept can
be applied to diffusion-based sampling processes to merge
several timesteps (teacher) into a single timestep (student)
to accelerate generation speed.

Luhman and Luhman [18] directly apply knowledge dis-
tillation to diffusion models by minimizing the difference
between the outputs of a one-step student sampler and the
outputs of a multi-step DDIM sampler. Thus, the student
model is trained to imitate the output of the teacher model,
being initialized with a pre-trained denoising network to in-
herit knowledge from the teacher.

Subsequently, progressive distillation [27] proposes an
iterative approach to train a student network to merge two
sampling timesteps of the teacher network until it achieves
one-step sampling to imitate the entire sampling process.
This allows the student network to gradually learn the
teacher’s sampling process, as learning to predict the out-
put of two-step sampling is easier than learning to predict
the output of multi-step sampling. Given a pre-trained de-
noising network θ as the teacher, Salimans and Ho [27] first
train a student network θ′ to predict the output of two sam-
pling timesteps of the teacher network. The student θ′ then
becomes the new teacher and a new student with parameter
θ′′ is trained to combine two sampling timesteps of the new
teacher network θ′ until the total timestep reaches one step.
The student model is parameterized and initialized with the
same deep neural network as the teacher model, and pro-
gressive distillation is examined with the DDIM sampler.

Meng et al. [20] extend progressive distillation to scenar-
ios involving classifier-free diffusion guidance, achieving
single-step or few-step generation for text-to-image gener-
ation, class-conditioned generation, image-to-image trans-
lation, and image inpainting. They leverage a two-stage
approach to train a student model to match the combined
output of the conditional and unconditional models first,

and then apply progressive distillation by setting the stu-
dent model as the new teacher. Most of the configuration
remains the same as Salimans and Ho [27], mainly utilizing
DDIM sampler.

Recently, Song et al. [30] proposes a new class of gen-
erative models called consistency models which exploit the
consistency property on the trajectory of a probabilistic flow
ODE. They are trained to predict the original sample from
any point on the same ODE trajectory. During training, a
target network and an online network are utilized so that
the online network is optimized to generate the same output
as the target network, while the target network is updated
with an exponential moving average. Consistency models
can generate samples in a single step or a few steps by
design and are also capable of image inpainting, coloriza-
tion, and super-resolution in a zero-shot fashion. They can
be trained either independently or via distillation, which is
named as consistency training and consistency distillation,
respectively. In this paper, we are interested in consistency
distillation in comparison with our distillation method.

However, these distillation methods typically require ex-
tensive training to adapt to different pre-trained models,
datasets, and ODE solvers, which limits their practical ap-
plicability. In this paper, we propose to optimize newly
parameterized ODE solvers (D-ODE solvers) exclusively.
This approach effectively distills the sampling process with
larger steps into a new process with smaller steps while
keeping the pre-trained denoising network fixed. Because
our method does not require parameter updates for the de-
noising network, the distillation process can be completed
in just a few CPU minutes.

4. Implementation Details of D-ODE Solvers

In this section, we explain the ODE solvers of our inter-
est in detail and their application in the framework of D-
ODE solvers. We categorize ODE solvers into two distinct
types based on the nature of the diffusion timestep: discrete
and continuous. Discrete-time ODE solvers include DDIM,
PNDM, DPM-Solver, and DEIS, where we built our code
upon Lu et al. [16], while continuous-time ODE solvers
contain re-implementations of DDIM and EDM based on
the work done by Karras et al. [11].

4.1. D-ODE Solvers in Noise Prediction Networks

DDIM [29] is formulated as a non-Markovian diffusion
process of DDPM [9], defining a deterministic generation
procedure using implicit models. Given the estimated sam-
ple x̂t at timestep t, DDIM sampling process is expressed
as follows:

x̂t−1 = αt−1

(
x̂t − σtdt

αt

)
+ σt−1dt, (3)

where dt = Dθ(x̂t, t) holds with the denoising network
Dθ. Here, (αt, σt) represents a predefined noise sched-
ule and the denoising network is parameterized as a noise
prediction network ϵθ. The new denoising output Ot, for-
mulated by D-ODE solver, is defined as

Ot = dt + λt(dt − dt+1), (4)

following the notation in the main paper. We then simply
substitute the denoising output dt in the sampling process
with the new one Ot :

x̂t−1 = αt−1

(
x̂t − σtOt

αt

)
+ σt−1Ot. (5)

Above equation defines D-DDIM sampling process with
λt to be optimized through knowledge distillation. In cases
where the previous denoising output is unavailable (e.g., at
timestep T), we use the given noisy sample to define new
denoising output Ot, resulting in Ot = dT +λT (dT −xT)
at initial timestep T . The assumption that both xT and dT

follow a normal distribution N (0, σ2
t I) in theory ensures

that the mean of Ot remains consistent with the original
denoising output. It is expected that (dT − xT) contains
information regarding the direction toward the true xT−1

to some extent, which actually improves the FID score in
practice. Thus, we also apply this sampling recipe to other
D-ODE solvers based on noise prediction networks.

PNDM [15] is based on pseudo-numerical methods on
the data manifold, built upon the observation that classi-
cal numerical methods can deviate from the high-density
area of data. PNDM encapsulates DDIM as a simple case
and surpasses DDIM with its high-order methods. How-
ever, PNDM requires 12 NFE for the first 3 steps, making
it challenging to compare with other methods using a fixed
NFE. Therefore, we opt for iPNDM [35], which eliminates
the need for initial warm-up steps and outperforms PNDM
while maintaining the pseudo-numerical sampling process.
iPNDM employs a linear combination of multiple denois-
ing outputs to represent the current denoising output while
adhering to the sampling update path of DDIM, as shown
below:

d̂
(3)

t =
1

24
(55dt − 59dt+1 + 37dt+2 − 9dt+3), (6)

x̂t−1 = αt−1

(
x̂t − σtd̂

(3)

t

αt

)
+ σt−1d̂

(3)

t , (7)

where d̂t is approximated with three previous denoising
outputs (i.e., dt+1, dt+2, and dt+3) and then applied to
the DDIM sampling process. Therefore, the first three de-
noising outputs should be defined independently as follows:

d̂
(0)

t = d̂t, (8)

d̂
(1)

t =
3

2
d̂t −

1

2
d̂t+1, (9)

d̂
(2)

t =
1

12
(23d̂t − 16d̂t+1 + 5d̂t+2). (10)

Leveraging these newly defined denoising outputs d̂
(p)

t (p =
3 after three timesteps) by iPNDM, we construct the sam-
pling process of D-iPNDM, where the new denoising output
Ot can be defined as

Ot = d̂
(p)

t + λt(d̂
(p)

t − d̂
(p)

t+1). (11)

Then, d̂
(p)

t in Eq. (7) is replaced by Ot, which leads to the
same update rule as Eq. (5) with differrent formulation of
Ot.

DPM-Solver [16] utilizes the semi-linear structure of
probabilistic flow ODEs by solving the exact formula-
tion of the linear part of ODEs and approximating the
weighted integral of the neural network with exponential
integrators [10]. DPM-Solver offers first-order, second-
order, and third-order methods, with the first-order variant
corresponding to DDIM. For single step approach, DPM-
Solver strategically divides the total sampling steps us-
ing these different-order methods. For instance, DPM-
Solver2 (second-order DPM-Solver) is employed 5 times
to generate a sample comprising 10 denoising steps, with
the denoising network being evaluated twice within DPM-
Solver2. To achieve 15 denoising steps, DPM-Solver2 is
applied 7 times, and DPM-Solver1 (or DDIM) is applied
during the final denoising step.

In this section, we delve into the formulation of D-DPM-
Solver2, and the application to DPM-Solver3 and DPM-
Solver++ [17] follows a similar approach. First, we denote
τt = log(αt/σt) as the logarithm of the signal-to-noise ra-
tio (SNR), and τt is a strictly decreasing function as t in-
creases. Consequently, we can establish an inverse function
mapping from τ to t, denoted as tτ (·) : R → R. Now, we
can outline DPM-Solver2 with the following steps:

t− 1

2
= tτ (

τt−1 + τt
2

), (12)

x̂t− 1
2
=

αt− 1
2

αt
x̂t − σt− 1

2
(e

ht
2 − 1)dt, (13)

x̂t−1 =
αt−1

αt
x̂t − σt−1(e

ht − 1)dt− 1
2
. (14)

In these equations, ht = τt−1 − τt, and x̂t− 1
2

represents
the intermediate output between timestep t− 1 and t. Since
DPM-Solver2 utilizes a two-stage denoising step, we must
define two denoising outputs Ot and Ot− 1

2
to formulate D-

DPM-Solver2 with λt and λt− 1
2

optimized through knowl-
edge distillation:

Ot = dt + λt(dt − dt+ 1
2
), (15)

Ot− 1
2
= dt− 1

2
+ λt− 1

2
(dt− 1

2
− dt). (16)

These new denoising outputs are then applied in Eq. (13)
and Eq. (14) to define the sampling process of D-DPM-
Solver2:

x̂t− 1
2
=

αt− 1
2

αt
x̂t − σt− 1

2
(e

ht
2 − 1)Ot, (17)

x̂t−1 =
αt−1

αt
x̂t − σt−1(e

ht − 1)Ot− 1
2
. (18)

Similar to DPM-Solver, DEIS [35] employs an expo-
nential integrator to exploit the semi-linear structure of the
reverse-time diffusion process. In particular, they propose
the use of high-order polynomials to approximate the non-
linear term in ODEs as shown below:

Pr(t) =

r∑
j=0

Ctjdt+j , (19)

x̂t−1 =
αt−1

αt
x̂t + Pr(t), (20)

where {Ctj}rj=0 is numerically determined through
weighted integration to approximate the true ODE trajec-
tory. DEIS offers several variants based on the numerical
method used to estimate Ctj , and for our experiments, we
choose tAB-DEIS as it exhibits the most promising results
among the variants. Additionally, Zhang and Chen [35]
explores DEIS for different values of r ∈ {1, 2, 3} where
larger values of r generally lead to improved approxima-
tions of the target score function. It is worth noting that
DDIM can be seen as a special case of tAB-DEIS with
r = 0.

Referring to Eq. (20), we define a new denoising output
Ot and the sampling process of D-DEIS as follows:

Ot = Pr(t) + λt(Pr(t)− Pr(t+ 1)), (21)

x̂t−1 =
αt−1

αt
x̂t +Ot. (22)

4.2. D-ODE Solvers in Data Prediction Networks

In our study, we newly implement DDIM [29] in a con-
tinuous setting using the parameterization of the data pre-
diction network. We follow the configurations outlined by
Karras et al. [11]. The sampling process for this modified
DDIM is defined as follows:

st =
dt − x̂t

σt
, (23)

x̂t−1 = x̂t + (σt − σt−1)st, (24)

where dt = Dθ(x̂t, t) holds, and st approximates the score
function, directing toward the high-density area of the data.
The denoising network is parameterized as the data predic-
tion network xθ, and the denoising step is carried out in
Eq. (24) based on the difference in noise levels measured
by (σt − σt−1).

Similar to D-DDIM with the noise prediction network,
the new denoising output Ot for D-DDIM is defined as

Ot = dt + λt(dt − dt+1). (25)

Then, Ot is incorporated into the sampling process of
DDIM instead of dt as follows:

st =
Ot − x̂t

σt
, (26)

x̂t−1 = x̂t + (σt − σt−1)st. (27)

Karras et al. [11] introduce EDM sampler based on
Heun’s second-order method, which achieves a state-of-the-
art FID score on CIFAR-10 and ImageNet64. They utilize a
novel ODE formulation, parameter selection, and modified
neural architectures. The EDM sampling process is shown
as follows:

st =
dt − x̂t

σt
, (28)

x̂′
t−1 = x̂t + (σt − σt−1)st, (29)

s′t =
d′
t−1 − x̂′

t−1

σt−1
, (30)

x̂t−1 = x̂t + (σt − σt−1)(
1

2
st +

1

2
s′t), (31)

where d′
t−1 = Dθ(x̂

′
t−1, t − 1) holds. The first stage of

EDM with Eq. (28) and Eq. (29) is equivalent to DDIM,
and then the score function is more accurately estimated in
the second stage with Eq. (30) and Eq. (31) by linearly com-
bining two estimations st and s′t. Notably, 18 steps of EDM
sampling correspond to 35 NFE, as one step of EDM in-
volves two network evaluations, and Eq. (30) and Eq. (31)
are not computed at the last step.

To construct the sampling process of D-EDM, we define
two denoising outputs:

Ot = dt + λt(dt − d′
t+1), (32)

O′
t−1 = d′

t−1 + λt(d
′
t−1 − dt). (33)

Consequently, the sampling steps for D-EDM are described
as follows:

st =
Ot − x̂t

σt
, (34)

x̂′
t−1 = x̂t + (σt − σt−1)st, (35)

s′t =
O′

t−1 − x̂′
t−1

σt−1
, (36)

x̂t−1 = x̂t + (σt − σt−1)(
1

2
st +

1

2
s′t). (37)

4.3. Various Interpretations of D-ODE Solvers

New denoising output Ot in D-ODE solvers is formulated
based on the observation that denoising outputs are highly
correlated, and it is essential to retain the same mean as the
original outputs. We rewrite the definition of our denoising
output as follows:

Ot = dt + λt(dt − dt+1). (38)

The above formulation can be interpreted to calculate in-
terpolation (or extrapolation) between the current and pre-
vious denoising outputs to estimate the accurate score func-
tion. Therefore, D-ODE solvers can be seen as the pro-
cess of dynamically interpolating (or extrapolating) the de-
noising outputs with λt optimized through knowledge dis-
tillation. Similarly, Zhang et al. [34] proposed the use of
extrapolation on the current and previous estimates of the
original data x̂t. They argued that extrapolating between
two predictions includes useful information toward the tar-
get data by refining the true mean estimation. Although ac-
curate extrapolation requires grid search for parameter tun-
ing, they demonstrated improvements in the FID of various
ODE solvers.

Another interpretation is based on the work of Permenter
and Yuan [22], who matched the denoising process to gradi-
ent descent applied to the Euclidean distance function under
specific assumptions. They reinterpreted diffusion models
using the definition of projection onto the true data distribu-
tion and proposed a new sampler by minimizing the error in
predicting ϵ between adjacent timesteps. Their sampler cor-
responds to D-DDIM with λt = 1 selected via grid search,
and it outperforms DDIM and PNDM.

The last interpretation is that D-ODE solvers accelerate
the convergence of sample generation in a way similar to
how momentum boosts optimization in SGD [31]. Just as
SGD with momentum utilizes the history of previous gra-
dients to speed up parameter updates in a neural network,
D-ODE solvers leverage previous denoising outputs to ac-
celerate the convergence of sampling. An interesting future
direction could explore whether advanced optimizers used
in machine learning models [5, 12, 25] can be effectively
applied to diffusion models.

4.4. Various Formulations of D-ODE Solvers

To further validate the effectiveness of D-ODE solvers,
we explore different formulations of D-ODE solvers based
on DDIM. For example, we can estimate parameters for two
adjacent denoising outputs separately instead of optimizing
a single parameter λt, which we name D-DDIM-Sep. D-
DDIM-Sep corresponds to Eq. (8) of the main paper with
T = t + 1. Eq. (8) of the main paper is represented as D-
DDIM-All where all previous denoising outputs are utilized

to estimate the new one. Additionally, we include D-DDIM
which is shown as Eq. (10) of the main paper and D-DDIM-
2 which is equal to Eq. (9) of the main paper with T = t+2.
All methods are explicitly presented below for comparison,
with dt = Dθ(x̂t, t):

DDIM : dt, (39)
D-DDIM-Sep : Ot = λt1dt + λt2dt+1, (40)

D-DDIM-All : Ot =

T∑
k=t

λkdk, (41)

D-DDIM : Ot = dt + λt1(dt − dt+1), (42)

D-DDIM-2 : Ot = dt + λt1(dt − dt+1)+

λt2(dt − dt+2).
(43)

NFE 10 25 50
DDIM 18.85 9.79 7.17
D-DDIM-Sep 79.21 26.40 11.50
D-DDIM-All 179.67 36.65 18.48
D-DDIM 8.67 8.18 6.55
D-DDIM-2 18.75 9.83 7.21

Table 1. Comparison on various D-ODE solver formulations.
FID is measured on CIFAR-10 with the noise prediction model
and the best FID is bolded.

Figure 1. Comparison of the change of norm with different
formulations. We adopt the same setting as Fig. 5 in the main
paper.

We examined the five formulations mentioned above on
CIFAR-10 with different NFE, while all other configura-
tions for distillation and sampling are remained the same.
As shown in Tab. 1, D-DDIM outperforms all other for-
mulations, and other formulations such as D-DDIM-Sep,
D-DDIM-All, and D-DDIM-2 even worsen the FID score
compared to DDIM. D-DDIM-Sep and D-DDIM-All re-
sults in especially higher FID scores which can be inter-
preted that the sampling process does not properly converge

to generate realistic samples. As we pointed out in the
main paper, independently estimated parameters may devi-
ate from the target trajectory of ODE solvers. This is due to
the fact that the set of λ in Eq. (40) and Eq. (41), determined
by distillation, can be volatile without any constraints and
may not reflect the general sampling rules across different
batches. D-DDIM-2 also does not improve the FID score of
DDIM. One possible reason for this is that parameters opti-
mized on one batch may not be applicable to others. Since
the two parameters are optimized on only one batch, fine-
grained estimation of denoising predictions like D-DDIM-2
may not be valid for all batches.

Moreover, we display the change of norm in Fig. 1 refer-
ring to Fig. 5 of the main paper. While D-DDIM-All-10 and
D-DDIM-Sep-10 initially seem to follow the target trajec-
tory (i.e., DDIM-1000), they highly deviate from either the
target or the original ODE trajectory (i.e., D-DDIM-10) at
last, which matches with the high FID scores in Tab. 1. As
mentioned in Sec. 3.2 this is due to the instability inherent
in Eq. (41).

5. Experiment Details

Model architectures For the noise prediction models, we
follow the architectures and configurations of Ho et al. [9]
and Dhariwal and Nichol [3], utilizing their pre-trained
models. Specifically, we adopt the model architecture and
configuration in DDPM [9] for experiments on CIFAR-10
and CelebA 64 × 64. For ImageNet 128 × 128 and LSUN
Bedroom 256× 256, we use the corresponding network ar-
chitectures from Dhariwal and Nichol [3]. In experiments
with the data prediction models, we utilize the configura-
tions and pre-trained models from Karras et al. [11] for
CIFAR-10, FFHQ 64× 64, and ImageNet 64× 64.

Distillation configurations As outlined in the algorithm
of main paper, we first perform teacher sampling with
CT steps to set target samples, followed by student sam-
pling with T steps to match the student’s outputs with the
teacher’s targets. For most D-ODE solvers, we use DDIM
sampling as the teacher sampling method, as it generates
one denoising output per denoising step, enabling one-to-
one matching between targets and predictions. For iPNDM
and DEIS, we use themselves as the teacher method for
distillation, respectively (e.g., DEIS with CT steps as the
teacher and D-DEIS with T steps as the student). While
they use a linear combination of previous denoising outputs
to estimate current denoising predictions, the sampling dy-
namics are the same as DDIM. Therefore, the teacher’s tar-
gets and student’s predictions can be easily matched.

Moreover, student sampling is performed sequentially to

optimize λ in D-ODE solvers. In other words, λt is first es-
timated via distillation and then the next sample at timestep
t+1 is generated with optimized D-ODE solvers at timestep
t during student sampling. This approach helps stabilize the
sampling process, as λt+1 is estimated based on previously
generated samples from D-ODE solvers with λ∗

t . As a re-
sult, it can alleviate exposure bias [21, 24] with precisely
estimated λ.

Sampling details For simplicity, we adopt uniformly di-
vided timesteps for all ODE solvers. We generate 50K sam-
ples and report the mean FID score calculated after three
runs with different seeds. All experiments are conducted
using GPUs, including NVIDIA TITAN Xp, Nvidia V100,
and Nvidia A100. We fix the scale C = 10 and batch size
|B| = 100, except for LSUN Bedroom where |B| = 25
due to memory constraints. Ablation studies on these two
parameters are presented in Sec. 6.

Several design choices need to be made for each ODE
solver. PNDM requires 12 NFE for the first 3 steps, mak-
ing it challenging to compare with other methods using a
fixed NFE. Therefore, we adopt iPNDM [35], which does
not require initial warm-up steps and outperforms PNDM.
DEIS offers various versions of ODE solvers, among which
we select tAB-DEIS, exhibiting the best FID score in their
experiments. DPM-Solver combines different-order solvers
using adaptive step sizes. For simplicity, we opt for the
single-step DPM-Solver, which sequentially uses DPM-
Solver1, DPM-Solver2, and DPM-Solver3 to compose the
total timesteps. While EDM allows stochastic sampling by
its design, we employ deterministic sampling to obtain a
definite target sample generated by teacher sampling.

6. Ablation Studies

We conduct ablation studies on two key parameters for
the distillation of D-ODE solvers: the scale S and the batch
size |B|. The scale S determines the number of steps for the
teacher sampling, with the teacher sampling going through
S times more denoising steps compared to the student sam-
pling. A larger scale S results in a better target generated
by the teacher sampling and can be viewed as increasing the
guidance strength of the teacher during distillation. It is also
crucial to choose an appropriate batch size |B| since the op-
timal λ is estimated on a single batch B and then reused for
other batches. Thus, the batch size should be large enough
to encompass different modes of samples within the dataset,
while excessively large batch size may not fit into GPU
memory.

We test various scales in Tab. 2a using the noise predic-
tion models trained on CIFAR-10. As the scale increases,
the FID score consistently improves across different NFE
values. With a larger scale S, the student sampling is

NFE 10 25 50

5 9.68±0.10 8.20±0.06 6.52±0.02

10 8.83±0.10 8.09±0.03 6.55±0.09

20 8.52±0.04 8.01±0.03 6.50±0.01

30 8.41±0.05 7.87±0.05 6.50±0.01

(a) Different Scale S

NFE 10 25 50

5 9.33±0.66 7.75±0.13 6.64±0.09

10 8.83±0.58 7.79±0.09 6.55±0.07

50 8.03±0.08 7.69±0.08 6.58±0.05

100 8.22±0.10 7.68±0.03 6.50±0.09

(b) Different Batch Size |B|

Table 2. Ablation studies on scale C ∈ {5, 10, 20, 30} and
batch size |B| ∈ {5, 10, 50, 100}. CIFAR-10 with noise pre-
diction models are employed for evaluation. We report mean and
standard deviation after 3 runs (mean ± std) and the best FID is
bolded.

strongly guided by the accurate target of teacher sampling,
resulting in a lower FID. However, the effect of the guid-
ance scale weakens with increasing NFE. This is reasonable
since the performance of student sampling depends heavily
on that of teacher sampling, and the teacher’s FID score
eventually converges to a certain value. As the maximum
number of timesteps is 1000 for discrete timesteps, scales
20 and 30 at 50 NFE generate samples guided by the same
teacher sampling.

In Tab. 2b, D-ODE solvers with various batch sizes also
exhibit clear tendency. As the batch size increases, both the
FID score and variance tend to decrease. With relatively
large NFE values, FID scores and variance converge to a
certain point. As the effect of distillation diminishes with
higher NFE, even a small batch size results in low variance.
We choose a batch size of 100 for most datasets, which is
sufficient to capture the inherent variety of the dataset and
reduce variance compared to a smaller batch size.

7. More Comparisons

In this section, we present further comparisons between
D-ODE solvers and previous learning-based (knowledge
distillation) and learning-free methods. Fig. 2a displays FID
scores with varying NFE on CIFAR-10, including consis-
tency distillation (CD) [30], which can perform a one-step
or few-step sampling, and progressive distillation (PD) [27],
allowing a sampling with steps in a geometric sequence
(e.g., 1, 2, 4, ..., 1024). D-EDM requires at least two steps
to utilize previous denoising outputs.

NFE 10 25 50

DDIM 18.85 9.79 7.17

D-DDIM 8.67 8.18 6.55

Fixed-D-DDIM (λ = 0.5) 11.45 7.00 5.27
LA-DDIM (λ = 0.1) 15.24 8.57 6.29

Table 3. Comparison with learning-free samplers on CIFAR-10
with noise prediction models. The best FID is bolded.

Overall, CD outperforms other methods in terms of FID
on one-step generation. However, it is important to note that
this comparison does not account for training time. For in-
stance, Song et al. [30] reported that consistency models on
CIFAR-10 utilized 8 Nvidia A100 GPUs for training. On
the other hand, simply generating 50K samples for 30 steps
takes less than 30 minutes on a single A100 GPU, achieving
similar sample quality to consistency models. while CD and
PD are attractive options for practitioners with ample com-
putational resources, given their ability to enable one-step
generation, the major advantage of D-ODE solvers lies in
their capacity to enhance existing ODE solver-based sam-
plers with minimal modifications and fast optimization.

Recently, Zhang et al. [34] introduced lookahead diffu-
sion models which enhance the FID scores of existing ODE
solvers by refining mean estimation using previous data pre-
dictions. They achieve this by extrapolating previous pre-
dictions of initial data to approximate the target data. Un-
like D-ODE solvers, lookahead models require parameter
λ to be chosen through grid search, with a default setting
of λ = 0.1 during experiments. Following their configu-
ration, we compare lookahead diffusion models of DDIM,
so-called LA-DDIM, with our D-DDIM in Tab. 3. The ta-
ble shows that, except at 50 NFE, D-DDIM outperforms
LA-DDIM.

Inspired by LA-DDIM, we also experiment with fixing
λt in D-DDIM as a constant λ and optimizing it through
grid search. We refer to this modified approach as Fixed-
D-DDIM. In Fig. 2b and Fig. 2c, we conduct grid searches
on λ using a 10-step sampler on CIFAR-10. Additionally,
we provide the FID scores of DDIM and D-DDIM as refer-
ences (dotted lines). Despite the grid search performed on
LA-DDIM, it is unable to match the FID of D-DDIM. On
the other hand, Fixed-D-DDIM achieves the same FID as D-
DDIM with sufficient grid search. This suggests that lever-
aging denoising outputs is a more efficient strategy than re-
lying on initial data predictions. Moreover, Fixed-D-DDIM
further improves upon D-DDIM’s performance at 25 and
50 NFE, indicating the potential for finding an even better λ
value that results in a lower FID. Future research directions
could explore various methods to efficiently determine λ.
It is important to highlight that the FID of LA-DDIM and

(a) Distillation methods (b) LA-DDIM (c) Fixed-D-DDIM
Figure 2. Comparison figures. (a) FID scores over NFE for distillation methods (CD, PD, and D-EDM). (b) FID scores over λ with
LA-DDIM. (c) FID scores over λ with Fixed-D-DDIM

Fixed-D-DDIM varies depending on the chosen λ. How-
ever, D-DDIM’s advantage over other methods is its inde-
pendence from grid search, with sampling times compara-
ble to DDIM.

8. More Experiments on DPM-Solver++
Built upon DPM-Solver [16], DPM-Solver++ [17] ad-
dresses the instability in the previous multi-step approach of
solving diffusion ODE and adopts thresholding methods to
constrain the solution within the range of the original data.
Similar to the formulation of D-DPM-Solver explained in
Sec. 4.1, we apply our new denoising outputs to replace the
original denoising output. Fig. 3 demonstrates that applying
D-ODE solvers to DPM-Solver++ can further improve the
image quality through distillation.

In addition, we present extra experiment results in Fig. 4
with noise prediction models on CIFAR-10, CelebA64, and
ImageNet128.

9. Analysis Figures and Qualitative Results

In Fig. 5, more analysis figures similar to Fig. 5 of the
main paper are shown with different pixels. We also show
more qualitative results in Fig. 6, Fig. 7, Fig. 8, and Fig. 9.

(a) CIFAR-10 (32× 32) (b) CelebA (64× 64) (c) ImageNet (128× 128)

Figure 3. Image quality measured by FID ↓ with DPM-Solver++. Dotted lines denote DPM-Solver++ while straight lines represent
D-DPM-Solver++.

(a) CIFAR-10 (32× 32)

(b) CelebA (64× 64)

(c) ImageNet (128× 128)

Figure 4. Image quality measured by FID ↓ with varying NFE ∈ {2, 5, 10, 25, 50, 100, 250}. For DPM-Solver3 and DEIS3, we use
3 NFE instead of 2 NFE as the third-order method requires at least three denoising outputs. Dotted lines denote ODE solvers (DDIM,
iPNDM, DPM-Solver, and DEIS) while straight lines represent the applications of D-ODE solver to them (D-DDIM, D-iPNDM, D-DPM-
Solver, and D-DEIS).

Figure 5. Update path of randomly selected two pixels in the images. The result of 1000-step DDIM is displayed as our target. These
figures are drawn with 1000 samples using a noise prediction model trained on CIFAR-10.

(a) CIFAR-10 (32× 32)

(b) FFHQ (64× 64)

(c) ImageNet (64× 64)

Figure 6. Qualitative results of CIFAR-10 (32 × 32), FFHQ (64 × 64), and ImageNet (64 × 64) with data prediction models. We
compare EDM (top) and D-EDM (bottom) in each subfigure with NFE ∈ {3, 5, 9, 25}.

(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)
Figure 7. Qualitative results of CelebA (64× 64) with noise prediction models. We compare ODE-solvers (DPM-Solver3, DEIS3) and
D-ODE solvers (D-DPM-Solver3, D-DEIS3) in each subfigure with NFE ∈ {3, 5, 10, 25}.

(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)
Figure 8. Qualitative results of ImageNet (128×128) with noise prediction models. We compare ODE-solvers (DPM-Solver3, DEIS3)
and D-ODE solvers (D-DPM-Solver3, D-DEIS3) in each subfigure with NFE ∈ {3, 5, 10, 25}.

(a) DPM-Solver3 (top) vs D-DPM-Solver3 (bottom)

(b) DEIS3 (top) vs D-DEIS3 (bottom)
Figure 9. Qualitative results of LSUN Bedroom (256× 256) with noise prediction models. We compare ODE-solvers (DPM-Solver3,
DEIS3) and D-ODE solvers (D-DPM-Solver3, D-DEIS3) in each subfigure with NFE ∈ {3, 5, 10, 25}.

References
[1] Yaniv Benny and Lior Wolf. Dynamic dual-output diffu-

sion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11482–
11491, 2022. 1, 2

[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations,
2018. 1

[3] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021. 1, 6

[4] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real nvp. In International Confer-
ence on Learning Representations, 2016. 1

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Journal of machine learning research, 12(7), 2011.
5

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014. 1

[7] Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su,
Jian Peng, and Jianzhu Ma. 3d equivariant diffusion for
target-aware molecule generation and affinity prediction. In
The Eleventh International Conference on Learning Repre-
sentations, 2022. 1

[8] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. stat, 1050:9, 2015. 2

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 2, 6

[10] Marlis Hochbruck and Alexander Ostermann. Exponential
integrators. Acta Numerica, 19:209–286, 2010. 3

[11] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. Advances in Neural Information Processing Sys-
tems, 35:26565–26577, 2022. 1, 2, 4, 6

[12] DP Kingma. Adam: a method for stochastic optimization.
In International Conference on Learning Representations,
2014. 5

[13] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan
Ho. Variational diffusion models. Advances in neural infor-
mation processing systems, 34:21696–21707, 2021. 1

[14] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1

[15] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
numerical methods for diffusion models on manifolds. In In-
ternational Conference on Learning Representations, 2021.
3

[16] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. Advances
in Neural Information Processing Systems, 35:5775–5787,
2022. 2, 3, 8

[17] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-
uan Li, and Jun Zhu. Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models. arXiv preprint
arXiv:2211.01095, 2022. 3, 8

[18] Eric Luhman and Troy Luhman. Knowledge distillation in
iterative generative models for improved sampling speed.
arXiv preprint arXiv:2101.02388, 2021. 2

[19] Calvin Luo. Understanding diffusion models: A unified per-
spective. arXiv preprint arXiv:2208.11970, 2022. 1

[20] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik
Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans.
On distillation of guided diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14297–14306, 2023. 2

[21] Mang Ning, Enver Sangineto, Angelo Porrello, Simone
Calderara, and Rita Cucchiara. Input perturbation re-
duces exposure bias in diffusion models. arXiv preprint
arXiv:2301.11706, 2023. 6

[22] Frank Permenter and Chenyang Yuan. Interpreting and im-
proving diffusion models using the euclidean distance func-
tion. arXiv preprint arXiv:2306.04848, 2023. 5

[23] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv e-prints, pages arXiv–2204,
2022. 1

[24] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. Sequence level training with recurrent
neural networks. In 4th International Conference on Learn-
ing Representations, ICLR 2016, 2016. 6

[25] Sebastian Ruder. An overview of gradient descent optimiza-
tion algorithms. arXiv preprint arXiv:1609.04747, 2016. 5

[26] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information
Processing Systems, 35:36479–36494, 2022. 1

[27] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations, 2021. 2, 7

[28] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. Advances in neural information processing
systems, 29, 2016. 1

[29] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2, 4

[30] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023. 2, 7

[31] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013. 5

[32] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling
the generative learning trilemma with denoising diffusion
gans. In International Conference on Learning Represen-
tations, 2021. 1

[33] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Run-
sheng Xu, Yue Zhao, Yingxia Shao, Wentao Zhang, Bin
Cui, and Ming-Hsuan Yang. Diffusion models: A compre-
hensive survey of methods and applications. arXiv preprint
arXiv:2209.00796, 2022. 1

[34] Guoqiang Zhang, Kenta Niwa, and W Bastiaan Kleijn.
Lookahead diffusion probabilistic models for refining mean
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1421–
1429, 2023. 5, 7

[35] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffu-
sion models with exponential integrator. In The Eleventh In-
ternational Conference on Learning Representations, 2022.
3, 4, 6

[36] Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song,
Noah Goodman, and Stefano Ermon. Bias and generalization
in deep generative models: An empirical study. Advances in
Neural Information Processing Systems, 31, 2018. 1

	. Trilemma of Generative Models
	. Noise and Data Prediction Networks
	. Knowledge distillation in Diffusion Models
	. Implementation Details of D-ODE Solvers
	. D-ODE Solvers in Noise Prediction Networks
	. D-ODE Solvers in Data Prediction Networks
	. Various Interpretations of D-ODE Solvers
	. Various Formulations of D-ODE Solvers

	. Experiment Details
	. Ablation Studies
	. More Comparisons
	. More Experiments on DPM-Solver++
	. Analysis Figures and Qualitative Results

