
Enhancing 3D Fidelity of Text-to-3D using Cross-View Correspondences

Supplementary Material

In this supplementary material, we provide additional
details and qualitative results of CorrespondentDream
which were not included in the main paper due to spa-
tial constraints. We detail the refining and post-processing
of correspondences in Appendix A, and explain additional
implementation details of CorrespondentDream in Ap-
pendix B. In Appendix C, we elaborate on the effect the
value of CFG (!) has on the generated 3D object, and de-
vise a CFG scheduling scheme to yield more satisfying re-
sults. We visualize the cross-view correspondences in Ap-
pendix D. We analyze the results when using cross-view
correspondence loss as a pre-processing or post-processing
method in Appendix E. We demonstrate that even at re-
duced image resolutions used in CorrespondentDream, the
quality and 3D infidelities of the outputs are maintained
in Appendix F. We visualize the intermediate rendered out-
puts of CorrespondentDream in comparison to the baseline
(MVDream [28]) in Appendix G. We elaborate on the appli-
cability of CorrespondentDream on other zero-shot text-to-
3D generation methods in Appendix H. We outline the com-
putation cost of CorrespondentDream, and evidence that the
improved 3D fidelity does not come from the additional
computation in Appendix I. We demonstrate that using off-
the-shelf image matchers give dissatisfactory results, and
substantiate the use of annotation-free cross-view corre-
spondences in Appendix J. Finally, we present some exam-
ple text prompts used for our experiments in Appendix K.

A. Correspondence post-processing details
In Sec. 4.3, we mentioned that the correspondences are de-
termined from the correlation map as shown in Eq. (7). In
this section, we describe the refining and post-processing
steps which were applied to the correlation map and the
sampled correspondences to yield a more robust set of cor-
respondences that are aligned with human common sense.

Motivation. As we do not have the ground-truth correspon-
dences between rendered views, we couldn’t directly evalu-
ate if our cross-view correspondences align sufficiently well
with human perception in the presence of 3D infidelities. To
this end, we devised an indirect protocol to ensure that our
annotation-free cross-view correspondences are consistent
with human perception.

We sampled 10 text-to-3D outputs which seems to have
near-perfect 3D fidelity by human eyes. This would mean
that the NeRF depths are also consistent with human per-
ception, allowing us to consider the NeRF reprojections
as the pseudo-ground truth correspondences. We experi-
mented with various refinement / post-processing settings
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Figure A1. Ablation of CorrespondentDream opacity-based
foreground edge discarding. It can be seen that not discarding
the foreground edge pixels during the cross-view correspondence
loss results in unwanted artifacts around the final output.

to maximize the precision and recall of our annotation-
free cross-view correspondences with respect to the pseudo-
ground truth correspondences.
1. Filtering out by opacity. To ensure that we are establish-
ing correspondences only between the foreground objects,
i.e., not the background, we use the NeRF opacity values
to filter out the background positions. The opacity value
ranges from 0 to 1, where 0 signifies no occupancy (back-
ground) and values closer to 1 signifies high occupancy
(likely to be foreground). We can therefore disregard the
background positions by filtering out pixel positions with
opacity= 0.

However, we noticed that using the edge pixels (i.e.,
neighboring a background pixel) of the foreground object
results in unwanted artifacts near the edge of the object as
exemplified in Fig. A1. Considering that non-edge pixels
of the foreground usually have a opacity value of >0.99,
we additionally discard the edge pixels from the cross-view
correspondence loss computation by performing 2D aver-
age pooling on the opacity map, and disregarding the pixels
with opacity values less than the threshold value of 0.99.
This step is carried out for both the source and target im-
ages, where the predicted target pixel should also be within
the non-edge foreground pixels of the rendered view.
2. Soft mutual nearest neighbours filtering. After we
compute the 4D correlation map between adjacently ren-
dered views as explained in Sec. 4.3 of the main paper, we
perform a soft mutual nearest neighbour filtering as pro-
posed in NCNet [26] to facilitate the reciprocity constraint
on matches.

For self-containedness, we provide the details of this
approach in the following. Given a correlation map C

(i),



we perform a soft mutual nearest neighbour filtering M(·)
to yield a refined feature map Ĉ(i) = M(C(i)), where
Ĉ(i)(p, q, r, s) = r

(i)
pqrsr

(i+N)
pqrs C(p, q, r, s). r(i)pqrs and r

(i+N)
pqrs

are ratios of the score of the particular match C(i)(p, q, r, s)
with the best scores along each pair of dimensions corre-
sponding to the i-th and (i+N)th view respectively:

r
(i)
pqrs =

C(i)(p, q, r, s)

maxabC(i)(a, b, r, s)
, r

(i+N)
pqrs =

C(i)(p, q, r, s)

maxcdC(i)(p, q, c, d)
.

(10)
3. 4D smoothing. We additionally perform a 4D smooth-
ing operation on the correlation map. This not only intends
to smooth the 4D space of image correspondences, but also
aims at disambiguating correspondences with the help of
neighbouring matches. This motivation is inspired by the
NCNet [26] as well; we can assume correct matches to have
a coherent set of supporting them in the 4D space, especially
when the two rendered views depict the same object but just
from different azimuthal viewpoints. Our 4D smoothing
acts as a soft spatial consensus constraint (4D convolution
with 1/k3 uniform weight for each kernel position, instead
of learnable weights) to avoid errors on ambiguous or tex-
tureless matches.
4. Multi-layer features. We aim to leverage the multi-
ple features that can be obtained along the varying depths
of the upsampling layers of the diffusion U-Net. It has
been empirically demonstrated in existing work on image
correspondences [6, 14, 15] that it is beneficial to leverage
features from multiple layers, to exploit both the seman-
tics/context and local patterns/geometries that are encoded
in different layers. Among the 12 upsampling layers of the
diffusion U-Net in the multi-view diffusion model proposed
by MVDream [28], we extract features from the 6th and 9th
upsampling layers. We tried with various other combina-
tions, but using these two layers qualitatively gave satisfac-
tory results with reasonable computation overhead.
5. Epipolar constraint. For each of the rendered views
from NeRF, we know the ground-truth camera parameters,
specifically the extrinsic and intrinsic parameters. Using
these, we can accurately determine the epipolar line on the
target view corresponding to any pixel on the source view.
The epipolar constraint states that the true corresponding
point of a point from the source view must lie on the epipo-
lar line. Adhering to this constraint, we project all predicted
target points to their respective epipolar lines. To discard
obviously wrong correspondences, we calculate the projec-
tion distance to the epipolar line in order to discard any cor-
respondence whose projection distance to the epipolar line
is larger than a pixel distance threshold ⌧epi. We use ⌧epi = 2
in our settings.
Out-of-bounds filtering. Finally, we filter out any pre-
dicted target points which fall out of the non-edge fore-
ground pixels. Also, in calculating the corrNeRF from NeRF

reprojections, we filter out any reprojections if they fall out
of the image bounds of H 0

,W
0.

B. Additional implementation details
In this section, we provide additional implementation de-
tails of CorrespondentDream. It is noteworthy that Corre-
spondentDream was implemented largely on threestudio [4]
and MVDream [28], and the majority of settings detailed
below can be manipulated on their codebase.

We follow the protocols outlined in MVDream [28] to
embed the camera embeddings together with the time em-
beddings as residuals, by adding them together prior to be-
ing input to the diffusion network. To prevent the model
from generating 3D models with low quality appearance
and style, we further add a few fixed negative prompts dur-
ing the SDS optimization, e.g., ”blurry” or ”low quality”,
following MVDream [28].

We sample t ⇠ U(tmin, tmax) where tmin anneals from
0.98 to 0.02, and tmax anneals from 0.98 to 0.5, both in a
linear manner for 9600 iterations. This is the same as MV-
Dream [28], except that the annealing iterations were in-
creased in proportion to the increased number of total itera-
tions. For the first 6000 iterations, we render views from the
NeRF at image dimensions of 32⇥32 at batch size of 8 (i.e.,
2 sets of 4 views, total of 16 views rendered for cross-view
correspondence loss). After the 6000th iteration, we ren-
der views from the NeRF at image dimensions of 128⇥128
(i.e., 1 set of 4 views, total of 8 views rendered for cross-
view correspondence loss). Beginning the NeRF optimiza-
tion with rendered views at a lower resolution drastically re-
duces VRAM usage as empty space is pruned in early train-
ing. We set ! = 50 for our class-free guidance. We also de-
vise a class-free guidance scheduling scheme for improved
3D generation quality in the next section (Appendix C). We
use a rescale factor of 0.5 for the CFG rescale trick [19].
We turn on soft shading [18] and point lighting [25] to reg-
ularize the geometry. We also use the modified version of
the orientation loss [34] as in DreamFusion [25], to penalize
normal vectors facing backwards away from the camera for
the first 6000 iterations. This orientation loss is weighted
with a weight that scales linearly from 10 to 1000 until
the 6000th iteration. The background is replaced with 50%
chance to force the separation between the foreground and
the background during the NeRF optimization.

C. Class-free guidance scheduling
Note that we are using a default CFG value of ! = 50 oth-
erwise mentioned in our qualitative visualizations. Through
various experiments, we noticed that the value of class-free
guidance (CFG) ! has a dramatic effect on the level of de-
tails and smoothness of the rendered 3D object. Specifi-
cally, we observed that using a large value for ! 1) results



in a larger 3D object, 2) results in a higher level of details
in the 3D object, but 3) has a larger risk of 3D infidelities.
On the other hand, we noticed that using a low value for !
1) results in a smaller 3D object, 2) results in a smoother
surface of 3D objects, but 3) holds a much lower level of
details (overly smoothed) in the 3D object. To this end,
we experiment with various CFG scheduling schemes at an
aim to devise a scheme to maximize the benefits of both
high and low CFG values, while minimizing their down-
sides. Fig. A5 visualizes the results of different scheduling
schemes we tried. CFG10!50 denotes using ! = 10 for
first half, and ! = 50 for the latter half of the 3D genera-
tion process. CFG50!10 denotes using ! = 50 for first half,
and ! = 10 for the latter half of the 3D generation process.
CFG50!10!50 denotes using ! = 50 for first third, and
! = 10 for the second third, and ! = 50 again for the last
third of the 3D generation process.

It can be seen that beginning at ! = 10 results in a
smaller object, and ending with ! = 10 results in over-
smoothed surfaces. While beginning at ! = 50 results in
a larger object in comparison, ending with ! = 50 seems
to end up with more severe cases of 3D infidelities. The
qualitative results show that CFG50!10!50 exhibits a larger
3D object size, and an appropriate trade-off between the
smoothness and detail of the generated 3D shape. Nonethe-
less, CFG scheduling alone is insufficient to alleviate the
3D infidelities - and it shows that incorporating Correspon-
dentDream together with CFG50!10!50 exhibits the best
qualitative results overall.

D. Correspondence visualization
CorrespondentDream leverages the annotation-free cross-
view correspondences to guide the erroneous NeRF depths,
consequently correcting the 3D infidelities. We provide the
visualizations of the correspondences in Figs A6 to A8.
Specifically, the 3rd and 4th columns depicts the disparity
between the cross-view correspondences (corrdiff) and the
NeRF correspondences from reprojection (corrNeRF), where
brighter regions have higher disparities, i.e., higher chances
of infidelities. The 5th and 6th columns illustrate the cross-
view correspondences with the top 20% disparity values.
While we do not have the ground-truth correspondences to
quantitatively evaluate the quality of the cross-view corre-
spondences, it can be visually seen that the cross-view cor-
respondences are coherent to human perception.

E. Correspondence as geometry pre-/post-
processing

In our current scheme, we are supervising NeRF as our 3D
output representation in an alternating manner using the
cross-view correspondence loss Lcorr and LSDS, in the midst

of the NeRF optimization process.

In this section, we provide comparative qualitative re-
sults of different schemes of leveraging the cross-view cor-
respondences, (1) using only Lcorr for a fixed number of
iterations in the middle of NeRF optimization to fix any er-
rors prior to refining the details of the 3D outputs, and (2)
using Lcorr as a post-processing refinement to correct the 3D
infidelities after the SDS optimization is completed.

We show the results of this comparative experiment
in Fig. A9, where it can be seen that our current scheme
yields the best results in comparison to the pre-processing or
post-processing schemes. For the suboptimal results when
using pre-processing, we conjecture this is because the 3D
appearance of the output is premature at earlier stages,
and using the cross-view correspondence loss at that stage
strongly limits the geometric appearance of the output. This
is can be particularly detrimental in the potential presence
of any erroneous correspondences, and using the Lcorr alone
without LSDS may lead to the accumulation of errors.

We also assume this to be the reason behind the failure
of using Lcorr solely as a post-processing method. While
the accumulated errors can be somewhat alleviated via the
remaining SDS-supervised iterations when using the pre-
processing scheme, the post-processing scheme has no way
to alleviate the accumulated errors from 2,000 iterations of
cross-view correspondences.

F. Effect of image resolution on output

As mentioned in Sec. 5, while MVDream [28] finally uses
NeRF rendered views at resolutions of 256⇥256, we use
final rendered view resolutions of 128⇥128. We observed
this maintains the 3D output quality and infidelities, while
incurring significantly less latency and memory overhead.
Therefore, we determined that using rendered view resolu-
tions of 128⇥128 was sufficient to evaluate the efficacy of
CorrespondentDream while using lower computational re-
sources.

In this section, we qualitatively evidence that even with
the lower rendered-view resolutions, the overall output
quality and infidelities are nearly consistent in Fig. A10.

G. Progressive visualization

In this section, we provide the progressive visualization
of how the NeRF is optimized in CorrespondentDream,
through 2D rendered views along the course of training. We
provide a comparison with MVDream [28] to see how our
cross-view correspondence loss shows to correct the 3D in-
fidelities. The visualizations are shown Figs A11 to A14,
where it can be seen that CorrespondentDream fixes the
3D infidelities along the 3D optimization process, with the
help of cross-view correspondences. This is unlike MV-
Dream [28], where the 3D infidelities remain unresolved.
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Figure A2. Results of existing text-to-3D generation methods,
and applying Lcorr to DreamFusion [25]. Existing text-to-3D
methods suffer severely from 3D inconsistency e.g. Janus face
problem, which overwhelms the issue of 3D infidelity. The 3D in-
consistency makes it challenging to determine accurate cross-view
correspondences.

Fig. A2 shows the multi-view rendered results of using
the prompt “Samurai koala bear” for 3 different text-to-
3D models (DreamFusion, Magic3D, and ProlificDreamer),
where they all suffer from the multi-face problem. On the
last two rows, we also show that applying Lcorr does not
alleviate the multi-face problem, and it is thus hard to de-
termine the 3D fidelity of the output. Thereon, we highlight
that while our key problem is the presence of 3D infidelities
even when the diffusion prior has good 3D consistency, we
also rely on good 3D consistency to improve the 3D fidelity.
This is because poor 3D consistency causes the 2D render-
ings to be incorrect, making it challenging to determine ac-
curate cross-view correspondences. While our method can
be integrated with any single/multi-view text/image diffu-
sion priors with strong 3D consistency, MVDream was the
only such prior at the time of submission.

I. Computation cost analysis
We show the latency and peak GPU vRAM usage for
the low-resolution (32⇥32) and high-resolution (128⇥128)
stages in Tab. A1. Compute requirements can differ by text
prompt; here we used “A zoomed out DSLR photo of a pug

made out of modeling clay”. Specifically, the memory usage

Memory (GB) Latency (ms)

8-view low-res LSDS 13.6 197
2⇥8-view low-res LSDS 22.5 380
2⇥8-view low-res Lcorr 14.1 485

4-view high-res LSDS 14.5 198
2⇥4-view high-res LSDS 23.5 550
2⇥4-view high-res Lcorr 17.8 4700

Table A1. Latency and peak GPU vRAM usage for low-
resolution (32⇥32) and high-resolution (128⇥128) stages. The
memory usage of Lcorr is similar to LSDS despite rendering twice
the number of views. The latency for Lcorr is higher as we compute
a 4D correlation tensor and also perform pre-/post- processing.

“A DSLR photo of a covered wagon”

MVDream (4-view SDS) MVDream (8-view SDS) CorrespondentDream (ours)

“A chimpanzee with a big grin”

“A zoomed out DSLR photo of a pug made out of modeling clay”

Figure A3. Using LSDS only but with double the rendered views.
Using LSDS alone is insufficient to solve the 3D infidelities even
with double the number of rendered views as in Correspondent-
Dream.

of Lcorr is similar to LSDS despite having to render twice the
number of views. However, the latency for Lcorr is higher, as
we compute a 4D correlation tensor, and also perform pre-
/post- processing to obtain reliable correspondences. We
show in Fig. A3 that LSDS with increased number of views
is still insufficient to alleviate the 3D infidelities, evidencing
the efficacy of our method.

J. Why not use off-the-shelf matchers?
The capabilities of off-the-shelf matchers rely heavily on
the dataset they were trained on, which is problematic
where the domain of generated 3D object depends on the
text prompt. We visualize the results of warping our i) low-
resolution intermediate renderings and ii) high-resolution
final rendering using PDCNet [32]5 predictions in Ap-
pendix J. Note that PDCNet was the off-the-shelf image
matcher which was used in SPARF [33]. It can be seen
that PDCNet fails to find high-confidence correspondences

5We used the official code and MegaDepth-pretrained weights.



Query Reference Confident warped query

Figure A4. Visualization of correspondences computed using
PDCNet [32]. PDCNet fails to find high-confidence correspon-
dences for most of the foreground regions.

for most of the foreground regions (shown in orange), espe-
cially in the low-resolution renderings. Also, off-the-shelf
methods incur additional computation; PDCNet incurs ap-
proximately 1GB memory usage and 4000ms latency to es-
tablish correspondences between an image pair. Using dif-
fusion features eliminates the domain issue without explicit
priors or additional compute. However, we believe that a
carefully trained matcher could be more effective at han-
dling diffusion features’ shortcomings.

K. Example prompts
In this section, we provide some of the prompts which were
used to generate the qualitative examples in the main pa-
per and this supplementary material, and the other prompts
which were used in our experiments as well in Tab. A2. The
prompts were largely borrowed from DreamFusion [25] and
MVDream [28].
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Figure A5. Visualization of CFG scheduling with and without Lcorr. It can be seen that beginning at ! = 10 results in a smaller object,
and ending with ! = 10 results in oversmoothed surfaces. While beginning at ! = 50 results in a larger object in comparison, ending
with ! = 50 seems to end up with more severe cases of 3D infidelities. CFG50!10!50 exhibits a larger 3D object size, and an appropriate
trade-off between the smoothness and detail of the generated 3D shape. Nonetheless, CFG scheduling alone is insufficient to alleviate the
3D infidelities - it shows that incorporating CorrespondentDream together with CFG50!10!50 exhibits the best qualitative results overall.



Figure A6. Correspondence visualization. Text prompt - ”A chimpanzee with a big grin”. First two columns show rendered views, and
the next two columns visualize the difference between the cross-view correspondences and NeRF reprojections, where brighter colours
show higher difference. Non-coloured regions show that their correpondences have been filtered out. corrDiff correspondences that have
the top 20% difference from corrNeRF were visualized on the rightmost two columns. The images at top 4 rows were rendered at 32 ⇥ 32,
and the lower 4 rows were rendered at 128⇥ 128.



Figure A7. Correspondence visualization. Text prompt - ”A cute steampunk elephant”. First two columns show rendered views, and the
next two columns visualize the difference between the cross-view correspondences and NeRF reprojections, where brighter colours show
higher difference. Non-coloured regions show that their correpondences have been filtered out. corrDiff correspondences that have the top
20% difference from corrNeRF were visualized on the rightmost two columns. The images at top 4 rows were rendered at 32⇥ 32, and the
lower 4 rows were rendered at 128⇥ 128.



Figure A8. Correspondence visualization. Text prompt - ”A DSLR photo of a covered wagon”. First two columns show rendered views,
and the next two columns visualize the difference between the cross-view correspondences and NeRF reprojections, where brighter colours
show higher difference. Non-coloured regions show that their correpondences have been filtered out. corrDiff correspondences that have
the top 20% difference from corrNeRF were visualized on the rightmost two columns. The images at top 4 rows were rendered at 32 ⇥ 32,
and the lower 4 rows were rendered at 128⇥ 128.



“A chimpanzee with a big grin”

Preprocessing OursPostprocessing

“Orangutan holding a paint palette and a brush (…)”

“Corgi wearing a top hat (…)”

Preprocessing OursPostprocessing

“A DSLR photo of a covered wagon”

Figure A9. Results when using cross-view correspondence loss as a preprocessing / postprocessing step in NeRF optimization.
Instead of using cross-view correspondence loss as a pre-processing scheme (2,000 Lcorr only iterations after 3,000 iterations, followed
by remaining LSDS iterations) or post-processing scheme (2,000 Lcorr only iterations after all LSDS iterations have finished), our current
scheme of alternating supervision yields the best results.
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“A chimpanzee with a big grin” “Samurai koala bear”

Figure A10. Comparison of MVDream [28] at different resolutions. The overall quality of the output, and the 3D infidelities remain
even at lower resolutions of 128⇥128 compared to the original setting of 256⇥256 of MVDream [28]. We therefore use resolutions of
128⇥128 in our experiments to quickly validate the efficacy of CorrespondentDream with lower memory and latency overhead.
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Figure A11. Visualization of rendered outputs along NeRF optimization. We visualize the intermediate and final rendered outputs of
the baseline (MVDream [28]) and CorrespondentDream for a qualitative comparison. The text prompt used was ”Samurai koala bear”. It
can be seen that the 3D infidelities are corrected along the NeRF optimization of CorrespondentDream, whereas the infidelities remain in
the baseline.
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Figure A12. Visualization of rendered outputs along NeRF optimization. We visualize the intermediate and final rendered outputs of
the baseline (MVDream [28]) and CorrespondentDream for a qualitative comparison. The text prompt used was ”a zoomed out DSLR
photo of a gummy bear driving a convertible”. It can be seen that the 3D infidelities are corrected along the NeRF optimization of
CorrespondentDream, whereas the infidelities remain in the baseline.
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Figure A13. Visualization of rendered outputs along NeRF optimization. We visualize the intermediate and final rendered outputs of the
baseline (MVDream [28]) and CorrespondentDream for a qualitative comparison. The text prompt used was ”A cute steampunk elephant”.
It can be seen that the 3D infidelities are corrected along the NeRF optimization of CorrespondentDream, whereas the infidelities remain
in the baseline.
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Figure A14. Visualization of rendered outputs along NeRF optimization. We visualize the intermediate and final rendered outputs
of the baseline (MVDream [28]) and CorrespondentDream for a qualitative comparison. The text prompt used was ”A DSLR photo of a
covered wagon”. It can be seen that the 3D infidelities are corrected along the NeRF optimization of CorrespondentDream, whereas the
infidelities remain in the baseline.



a bichon frise wearing academic regalia
a capybara wearing a top hat, low poly
a cat with a mullet
a ceramic lion
a chimpanzee with a big grin
a cute steampunk elephant
a DSLR photo of a bear dressed in medieval armor
a DSLR photo of a beautiful violin sitting flat on a table
a DSLR photo of a corgi lying on its back with its tongue rolling out
a DSLR photo of a covered wagon
a DSLR photo of a mug of hot chocolate with whipped cream and marshmallows
a DSLR photo of an iguana holding a balloon
a DSLR photo of a pomeranian dog
a DSLR photo of a porcelain dragon
a DSLR photo of a puffin standing on a rock
a DSLR photo of a pug made out of metal
a DSLR photo of a turtle standing on its hind legs, wearing a top hat and holding a cane
a DSLR photo of a very cool and trendy pair of sneakers, studio lighting
a DSLR photo of a vintage record player
a DSLR photo of cat wearing virtual reality headset in renaissance oil painting high detail caravaggio
An anthropomorphic tomato eating another tomato
an orangutan holding a paint palette in one hand and a paintbrush in the other
a wide angle DSLR photo of a colorful rooster
a yellow schoolbus
a zoomed out DSLR photo of a baby dragon
a zoomed out DSLR photo of a colorful camping tent in a patch of grass
a zoomed out DSLR photo of a corgi wearing a top hat
a zoomed out DSLR photo of a dachsund wearing a boater hat
a zoomed out DSLR photo of a gummy bear driving a convertible
a zoomed out DSLR photo of a hippo made out of chocolate
a zoomed out DSLR photo of an origami bulldozer sitting on the ground
a zoomed out DSLR photo of a pug made out of modeling clay
a zoomed out DSLR photo of a wizard raccoon casting a spell
a zoomed out DSLR photo of a yorkie dog dressed as a maid
an astronaut riding a horse
Samurai koala bear
a DSLR photo of an eggshell broken in two with an adorable chick standing next to it
Darth Vader helmet, highly detailed
Pikachu with hat
A product photo of a toy tank
a boy in mohawk hairstyle, head only, 4K, HD, raw
Wall-E, cute, render, super detailed, best quality, 4K, HD
slayer, assassin with sword, portrait, game, unreal, 4K, HD
an alien monster that looks like an octopus, game, character, highly detailed, photorealistic, 4K, HD
mushroom boss, cute, arms and legs, big eyes, game, character, render, best quality, super detailed, 4K, HD
pentacle sign, 4k, HD

Table A2. Example prompts. These prompts were largely borrowed from DreamFusion [25] and MVDream [28].
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