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Abstract

Due to space constraints in the main paper, we offer de-
tails on the proposed Real-world Event Video Deblurring
(REVD) dataset and additional experimental results in the
supplementary materials. Specifically, we provide
− We provide details and an overview of the REVD dataset.
− We conduct additional analysis of the proposed modules
through ablation studies.
− We provide additional visualization results, including a
video demo.

1. Details about the REVD Dataset

1.1. Sophisticated Camera System Design

It is challenging to accurately align videos with high ex-

posure time and videos with low exposure time, as well as

event data with different modalities, using a conventional

camera system. In order to address this, we designed a

new system by extending the previous beamsplitter-based

settings [2, 4–7] employed in existing real-world deblurring

datasets. A beamsplitter is an optical tool designed to divide

incoming light into two beams based on a predetermined ra-

tio. Consequently, it allows two distinct cameras to record

identical scenes with very few baselines between cameras.

The key distinction from the existing system is that, in addi-

tion to the cameras dedicated to capturing blur and its corre-

sponding sharp videos, we also require an event camera. To

accommodate this, we designed the system with two beam-

splitters arranged in proximity, ensuring that three beams

emerge as the output of the beamsplitter system (See Fig. 6

in the main paper). As a result, thanks to this beam-splitter-

based camera system, we are able to capture the same scene

from three cameras simultaneously.

Another issue is the need to design for an equal amount

of illuminance received by the two cameras with long ex-

posure time and short exposure time. Typically, a camera
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Figure 1. Visualization of Trigger Signals for Each Camera.

with a long exposure time tends to have a higher irradiance

intensity, even with the same amount of aperture and ISO

values as a camera with a short exposure time. To address

this, similar to existing works [5, 7], we employed Neutral

Density filters (ND filters) for photometric alignment. An

ND filter is an optical filter used to adjust the amount of

incoming light entering the camera, thereby regulating ex-

posure. Maintaining color neutrality, ND filters reduce the

intensity of light. Typically, an ND filter has a specific op-

tical density, allowing light to pass through in a controlled

proportion, which is useful for exposure control. Through

this approach, we can accurately match the irradiance in-

tensity of the two cameras capturing blur and sharp videos.

Additionally, we inserted an ND filter in front of the event

camera to ensure uniform illuminance with RGB cameras.

1.2. Time Synchronization of Multiple Camera

Even when utilizing the sophisticated system, a remaining

issue is the necessity for accurate time synchronization of

the data coming from the three cameras. To address this, we

developed a microcontroller at the hardware level that can

send electrical trigger signals to other devices. This micro-

controller is connected to the event camera and two RGB

cameras, allowing it to transmit signals simultaneously to
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Figure 2. Qualitative evaluation on the third-party device.

all three devices. As shown in Fig. 1, we send two pulse

signals from the microcontroller to each camera for adjust-

ing the exposure times with the rising and falling edges of

each signal. We designed the middle time between the ris-

ing and falling edges of the two pulse signals to be identical,

ensuring that the sharp frame aligns with the middle time of

the blurred frame. The camera capturing the blurred video

is set to acquire data for a duration γ longer than the cam-

era capturing the sharp video, and in our experiments, we

configured γ to be 8. Furthermore, the event camera also

received the same external signal as the blurred RGB cam-

era, enabling it to be sliced based on the exposure time of

blurred frame with precise timestamps.

1.3. Geometric Alignment

While we used a beamsplitter to ensure that the three cam-

eras share nearly the same axis, there still exists a very

small baseline between the three cameras. To address this,

we geometrically aligned the sharp camera and event cam-

era to the blurred camera, ultimately achieving geometri-

cal alignment among the three cameras. More specifically,

we placed the three precisely temporally aligned cameras

statically in front of a blinking checkerboard pattern to per-

form calibration, deriving intrinsic and extrinsic parame-

ters. Then, we calculated the homography matrix for each

pair of cameras (sharp to blurred and event to blurred cam-

era), allowing us to transform pixel locations accordingly.

Additionally, to correct for any potential minor pixel mis-

alignment between sharp and blurred videos, we captured

static scenes for each sequence. For each scene, we com-

puted a homography matrix between the blur and sharp

frames, performing a corrected transformation to address

misalignment.

1.4. Contents of the REVD Dataset

Through the preceding steps, we can obtain a real-world

video deblurring dataset aligned both photometrically, ge-

ometrically, and temporally. Our REVD dataset contains

high-resolution data for images and events, with a resolu-

tion of 1024 × 768. The REVD dataset possesses the fol-

lowing characteristics:

(I) From moderate to extreme levels of blur strength, it is

suitable for training and evaluating of the event-guided de-

Table 1. Ablation study of spatial filter (SF) and global channel

filter (GCF) in the FCFE module.

Method w/o FCFE
FCFE FCFE FCFE

Ours
w/o (SF+GCF) w/o SF w/o GCF

PSNR 32.47 32.67 32.89 32.78 32.99

blurring methods.

(II) It incorporates not only blur generated by the camera’s

ego-motion but also blur caused by moving objects and the

simultaneous occurrence of dynamic blur arising from both

ego-motion and the object’s motion.

(III) We acquired the dataset in environments ranging from

daytime to just before sunset, encompassing diverse distri-

butions of event streams.

Figure 3 presents some samples from the REVD dataset.

1.5. Third-party Device Evaluation

To evaluate the generalization ability of the REVD dataset,

we conduct qualitative comparisons using real data acquired

from the third-party device (BFS-U3-04S2C-CS) with dif-

ferent specs from those used in REVD, such as sensor size

(1/2.9”), frame rate (40fps), exposure time (25ms), and res-

olutions (720×540). As illustrated in the Fig. 2, the model

trained on our REVD datasets obviously outperforms the

one trained on GoPro (synthetic). This demonstrates the

model trained on real data shows superior generalization

compared to synthetic datasets, highlighting the superiority

of real datasets over synthetic ones.

2. Effectiveness of Frequency Modules
We perform additional ablation studies on the REVD

dataset to analyze the effects of interactions in the frequency

domain within the proposed FCFE and ELTP modules.

Frequency-domain spatial filter and global channel fil-
ter in FCFE module. The FCFE module incorporates two

frequency domain components: spatial filtering (SF) and

global channel filtering (GCF). To examine the effects of

each component, we conduct an ablation study by keep-

ing all other aspects of the network unchanged and system-

atically removing each frequency component individually

from the FCFE module. Table 1 shows the results of the ab-

lation study of frequency components in the FCFE module.

For the SF that operates only on images and events at the

same time step, we observe a PSNR gain of 0.1 dB. On the

other hand, the more considerable gain of 0.21 dB for the

globally interacting along the channel dimensions of GCF

confirms the significant effectiveness of frequency compo-

nents in the FCFE module.

Frequency-domain channel attention map in ELTP
module. To achieve effective alignment even in lower spa-

tial resolution, ELTP encompasses fusion in both the spa-

tial domain, achieved through ResBlock corresponding to



Table 2. Effectiveness of frequency domain in the ELTP module.

Methods w/o ELTP ELTP w/o. Freq ELTP w/. Freq (Ours)

PSNR 32.72 32.88 32.99

the skip connection, and in the frequency domain through

FFT. Specifically, to perform operations in the frequency

domain, we obtain the frequency-domain channel attention

map, Ki (see Eq.(7) in the main paper). To demonstrate the

effects of the frequency-domain channel attention map, Ki,

we conduct an ablation study by removing the operations

associated with FFT. Table 2 illustrates the performance dif-

ference in the network resulting from the removal of Ki

in the ELTP module. Removing the frequency component

from ELTP decreases PSNR by 0.11 dB, demonstrating the

efficacy of frequency-domain temporal alignment in ELTP

module.

3. Visual Results
3.1. Temporal Consistency

We additionally evaluate the temporal consistency charac-

teristic of the restored videos. Following [1, 3], Figure 4 il-

lustrates the temporal information for restored videos, com-

paring with ground-truths. Our method demonstrates the

ability to generate temporally consistent restoration results

nearly identical to the ground truth, even in situations in-

volving extreme blur.

3.2. Qualitative Results on GoPro datasets.

We present qualitative results on the GoPro dataset in Fig-

ures 5.

3.3. More Qualitative Results on REVD datasets.

We present additional qualitative results from the REVD

dataset in Figures 6 and 7.

3.4. Video Demos

For a more effective illustration of the benefits offered by

our event-guided video deblurring method, we include a

supplementary video demo. This allows us to investigate

aspects such as temporal consistency and qualitative com-

parisons.
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Figure 3. Visualization of samples from the blur, sharp, and event stream pairs in the REVD dataset. We acquire dynamic scenes, which is

challenging for deblurring, from the REVD dataset.
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Figure 4. Visual comparisons of temporal consistency between restored videos and the ground truth. We depict the pixels of chosen

columns (indicated by the dotted line) following the methodology as in [1, 3].



Figure 5. Qualitative results on the GoPro datasets. Best viewed when zoomed in.



Figure 6. Qualitative results on the REVD dataset. Best viewed when zoomed in.



Figure 7. Qualitative results on the REVD dataset. Best viewed when zoomed in.




