
Fully Geometric Panoramic Localization

Supplementary Material

A. Method Details

A.1. Input Preparation

As explained in Section 4.1, our method operates in a fully
geometric manner using lines and their intersections for lo-
calization. Below we explain the detailed procedures for
how the inputs are prepared prior to localization.

Line Extraction Similar to LDL [16], our method ex-
tracts line segments in 2D and 3D using off-the-shelf line
detectors. For 2D, we create perspective crops of the in-
put panorama and apply LSD [10]. The detected lines are
then converted to the spherical coordinate frame compatible
to our method. For 3D, we extract lines from the colored
point cloud provided in OmniScenes [14] and Stanford 2D-
3D-S [2] by applying the 3D line detection algorithm from
Xiaohu et al. [28].

Principal Direction Extraction To imbue spatial context
to lines, we additionally extract principal directions from
lines as in LDL [16]. For 2D, we find the principal direc-
tions by estimating vanishing points. Specifically, we ex-
trapolate all lines in 2D and find their intersections. Then
the intersection points are binned to a spherical grid, from
which the top-3 bins with the largest number of points are
selected and used as 2D principal directions. For 3D, we
similarly bin the line directions on the spherical grid and
extract the top-3 directions. Note we can apply more so-
phisticated vanishing point estimation algorithms such as
Pautrat et al. [23], which will lead to an enhanced local-
ization performance since principal directions are first used
for rotation estimation. We leave such extensions to future
work.

Line Intersection Extraction Our method uniquely
leverages line intersections as important cues for accurate
pose search and refinement. As mentioned in Section 4.1,
we intersect lines from distinct principal directions. First for
2D line pairs, we extrapolate the lines on the sphere and ob-
tain the intersection coordinates, and then keep intersections
only if its spherical distance to both line segments are below
a designated threshold δ2D = 0.1rad. Similarly for 3D line
pairs, we extrapolate lines in the 3D space to get intersec-
tions, and then keep the intersections only if the distances
to both line segments are below a threshold δ3D = 0.15m.

A.2. Theoretical Analysis of Efficient Distance
Function Comparison

In this section, we theoretically analyze the efficient dis-
tance function comparison presented in Section 4.2.2. Re-
call that instead of exhaustively computing distance func-
tions on-the-fly as in prior work [16], we propose to cache
distance function values prior to localization to enable scal-
able and efficient localization. We start by proving Theorem
1 from Section 4.2.2 which justifies our efficient distance
function comparison. The proof builds upon the following
lemma:

Lemma 1. Given a metric d(·, ·) defined over the unit
sphere S2, let f(x;S):=mins∈S d(x, s) denote a distance
function to a set of spherical points S ⊂ S2. For two arbi-
trary points p1, p2 on the unit sphere S2, there exists a point
s∗ ∈ S that satisfies the following inequality,

|f(p1;S)− f(p2;S)| ≤ |d(p1, s∗)− d(p2, s
∗)|. (A.1)

Proof Without loss of generality, suppose that f(p1;S) ≥
f(p2;S). Also, let si = argmins∈S d(pi, s) for i = 1, 2.
Then we have the following,

|f(p1;S)− f(p2;S)| = d(p1, s1)− d(p2, s2) (A.2)
≤ d(p1, s2)− d(p2, s2) ≤ |d(p1, s2)− d(p2, s2)|, (A.3)

and thus by setting s∗ = s2, Equation A.1 holds true, which
proves the lemma.

Using the lemma, we prove the following theorem stated
in Section 4.2:

Theorem 1. Consider a countable, finite set of spheri-
cal points Q⊂ S2 that satisfy maxq∈Q minq̂∈Q d(q,Rq̂)≤
maxq∈Q minq̂ ̸=q d(q, q̂)= δ for all R ∈ SO(3). For an ar-
bitrary rotation R̃ ∈ SO(3), the following inequality holds:

1

|Q|
∑
q∈Q

|f(q;S)− f(argmin
q̂∈Q

d(q̂, R̃q); R̃S)| ≤ δ. (A.4)

Proof We prove the following inequality for an arbitrary
query point q ∈ Q, which when summed for all points in Q
equivalent to Equation A.4,

|f(q;S)− f(argmin
q̂∈Q

d(q̂, R̃q); R̃S)| ≤ δ. (A.5)

First, since distance function values are preserved under ro-
tation of both the query point q and the point set, we have
f(q;S) = f(R̃q; R̃S). Further, Lemma 1 suggests that
there exists a point s∗ ∈ S satisfying the following inequal-
ity,

|f(R̃q; R̃S)− f(argmin
q̂∈Q

d(q̂, R̃q); R̃S)| (A.6)

≤ |d(R̃q, R̃s∗)− d(argmin
q̂∈Q

d(q̂, R̃q), R̃s∗)|. (A.7)

Using the triangle inequality and the dense point assump-
tion maxq∈Q minq̂∈Q d(q, R̃q̂) ≤ δ, we have

|d(R̃q, R̃s∗)− d(argmin
q̂∈Q

d(q̂, R̃q), R̃s∗)| (A.8)

≤ d(R̃q, argmin
q̂∈Q

d(q̂, R̃q)) = min
q̂∈Q

d(q̂, R̃q) ≤ δ, (A.9)

which in turn proves Equation A.5.

Derivation of Efficient Distance Function Comparison
Using the theorem, we can derive the efficient distance
function comparison presented in Section 4.2.2. Given an
arbitrary rotation R̃, from Equation A.4 we have that

1

|Q|
∑
q∈Q

|f(q;S)− f(argmin
q̂∈Q

d(q̂, R̃q); R̃S)| (A.10)

=
1

|Q|
∑
q∈Q

|f(q;S)− f(argmin
q̂∈R̃TQ

d(q̂, q);S)| ≤ δ.

(A.11)

This implies that for a one-to-one mapping m(·) : Q →
R̃TQ that satisfies d(m(q), q) ≤ δ for all q ∈ Q,

1

|Q|
∑
q∈Q

|f(q;S)− f(m(q);S)| ≤ δ. (A.12)

Note that the existence of such a mapping is given from the
Hall’s marriage theorem [11], assuming that for an arbitrary
subset of points Q ⊂ Q, we can find a subset of points
M ⊂ R̃Q that satisfies maxq∈Q,m∈M d(q,m) ≤ δ and
|Q| ≤ |M|.

We can now use the results to derive a error bound on our
approximation scheme. For line distance functions, the cu-
mulative deviation between using our approximation (Equa-
tion 8 from Section 4.2.2) and the original LDL [16] formu-
lation (Equation 3 from Section 3) is bounded as follows,

1

|Q|

∣∣∣∣∑
q∈Q

|f2D(q;L2D)− f3D(q;L3D, R, t)|︸ ︷︷ ︸
original (LDL)

(A.13)

−
∑
q∈Q

|f2D(q;RTL2D)− f3D(q;L3D, I, t)|︸ ︷︷ ︸
ours

∣∣∣∣ (A.14)

=
1

|Q|

∣∣∣∣∑
q∈Q

|f2D(q;L2D)− f3D(q;L3D, R, t)| (A.15)

−
∑
q∈Q

|f2D(Rq;L2D)− f3D(Rq;L3D, R, t)|
∣∣∣∣ (A.16)

≤ 1

|Q|

∣∣∣∣∑
q∈Q

f2D(q;L2D)− f3D(q;L3D, R, t) (A.17)

−
∑
q∈Q

f2D(Rq;L2D) + f3D(Rq;L3D, R, t)

∣∣∣∣ (A.18)

=
1

|Q|

∣∣∣∣∑
q∈Q

(
f2D(q;L2D)− f2D(m(q);L2D)

)
(A.19)

+
(
f3D(m(q);L3D, R, t)− f3D(q;L3D, R, t)

)∣∣∣∣ (A.20)

≤ 1

|Q|
∑
q∈Q

(
|f2D(q;L2D)− f2D(m(q);L2D)| (A.21)

+ |f3D(m(q);L3D, R, t)− f3D(q;L3D, R, t)|
)
≤ 2δ,
(A.22)

where m(·) : Q → RQ is the one-to-one mapping defined
similarly as in Equation A.12. Therefore, when we have a
sufficiently small δ from a dense set of query points Q, our
efficient approximation closely follows the original line dis-
tance function comparison from LDL. A similar derivation
can also be made for point distance functions, but note that
for point distance functions we have the sharpening param-
eter γ = 0.2 applied to the spherical distance (Equation 4,
5). Theorem 1 and its consequences still hold however, due
to the fact that for a metric d(·, ·) defined on a bounded set,
the composition of the metric with an increasing concave
function f(·), namely f(d(·, ·)) is still a metric [9, 18] (also
known as the snowflake metric).

A.3. Translation / Rotation Pool Generation

We further elaborate on how the translation and rotation
pools are generated for our method. As explained in
Section 3, we follow the pool generation method from
LDL [16]. Specifically, we generate translation pools by
first creating a bounding box of the 3D map and subdivid-
ing the bounding box into grid partitions. The center of
each grid is used as the translation pool. We then gen-
erate rotation pools by combinatorially associating princi-
pal directions in 2D and 3D. Given three principal direc-
tions in 2D and 3D, namely di ∈ D2D and d̃i ∈ D3D,
each rotation is determined from a permutation that asso-
ciates directions in 2D with 3D. To elaborate, a rotation
matrix can be obtained from an arbitrary permutation σ(·)

Figure B.1. Efficacy of our efficient distance function compari-
son on localization accuracy and pose search runtime. We plot the
metrics under varying number of query points |Q| on Room 5 from
OmniScenes [14]. Larger number of query points lead to signif-
icantly enhanced accuracy, but the distance function comparison
originally propose from LDL [16] shows large increase in runtime.
On the other hand, our formulation shows an almost constant pose
search runtime with nearly no loss in localization accuracy. Note
the runtime is plotted in log scale.

by applying the Kabsch algorithm [13] on direction pairs
{(d1, d̃σ(1)), (d2, d̃σ(2)), (d3, d̃σ(3))}. Note that due to the
additional sign ambiguity when associating the principal
directions (i.e., for a fixed σ(·), di can be associated with
±dσ(i)), there can exist 23 × 3associations.

A.4. Hyperparameter Setup

We report details about the hyperparameters not reported in
the main paper. First for pose search, we filter short lines
to reduce the effect of noisy line misdetections. We specifi-
cally filter 3D lines whose lengths are over 20cm, and then
filter 2D lines by length to match the ratio of filtered 3D
lines. For pose refinement, we use Adam [17] for optimiz-
ing the cost functions (Equation 14, 15), with a step size of
0.1 for 100 iterations.

B. Additional Experimental Results
B.1. Scalability against Number of Query Points

One of the key factors for accurate localization of our
method is the dense set of query points used during pose
search. In all our experiments, we use |Q| = 642 query
points, which is much larger than that of LDL (|Q| = 42).
By using denser query points, we can better compare the
fine-grained scene details, leading to enhanced pose search
performance. However, naively increasing the number of
query points leads to a significant increase in pose search
runtime.

The efficient distance function comparison enables our
method to handle dense query points without a noticeable
increase in runtime. To illustrate the effect of using our ef-
ficient formulation, we assess the runtime and localization
accuracy in Room 5 from OmniScenes [14] using varying
number of query points. Figure B.1 plots the accuracy and
pose search runtime with respect to the number of query
points. First, one can observe that there is a clear, pos-

Method t-error R-error
Accuracy
(0.1m, 5◦)

Only rot. refine 0.21 1.56 0.08
Alternating trans. & rot. refine 0.07 1.55 0.74
No intersection match update 0.17 1.56 0.13
Ours 0.06 1.05 0.77

Table B.1. Ablation study of key components of our pose refine-
ment method, using the Room 2 subset from OmniScenes [14].

itive correlation between the number of query points and
localization accuracy. However, without the efficient com-
parison scheme, runtime also dramatically increases. As
our distance function comparison scheme pre-computes and
caches 3D distance functions, which is the largest bottle-
neck for scaling query points, pose search runtime remains
almost constant with the increase in query points. Further,
note that one can attain a reasonable localization accuracy
once query points are sufficiently dense (|Q| ≥ 350 for Fig-
ure B.1). Therefore, for memory critical applications, one
may choose to employ a smaller number of query points to
reduce the map size.

B.2. Additional Ablation Study for Pose Refinement

In this section we conduct additional ablation experiments
for the pose refinement module. Recall from Section 4.3
that we refine poses by aligning line intersections on the
sphere, where translation is first optimized followed by ro-
tation. We consider three ablated variations of pose refine-
ment: (i) only optimizing rotation, (ii) alternating transla-
tion and rotation refinement each step, and (iii) omitting
match updates during each translation refinement step. The
results are shown in Table B.1, where we conduct evalua-
tion in the identical setup as in Section 5.3. Only optimiz-
ing rotation leads to a large drop in localization accuracy,
since the translations from initial pose pools are usually at
least 0.10m away from the ground truth. Further, alternat-
ing translation and rotation instead of optimizing them se-
quentially lead to a slight drop in performance. As the ini-
tial rotation estimate is already fairly accurate (obtained by
aligning principal directions), placing more weight on op-
timizing translation during the initial stage of refinement is
beneficial. Finally, omitting the match update scheme leads
to a dramatic decrease in performance. As the initial trans-
lations are imperfect, the iterative updates during translation
refinement perform a crucial role in both obtaining good
translations and intersection point matches.

B.3. Robustness Against Line Detector Variations

We further evaluate the robustness of our method against
line detector variations. As mentioned in Section A.1, we
apply LSD [10] for 2D line detection. In this section we
test if our method can also handle line segments from other
detection methods. We conduct evaluations in the Om-

Line Detector t-error R-error
Accuracy
(0.1m, 5◦)

ELSED [27] 0.06 0.80 0.71
DeepLSD [22] 0.06 0.73 0.71
LSD [10] (Ours) 0.06 0.96 0.77

Table B.2. Robustness evaluation against line detector variations,
using the Extreme split from OmniScenes [14].

niScenes dataset [14], using the top-1 retrieval results for
refinement. To fairly test the generalizability of our method,
all the hyperparameters are fixed to the setup used for the
original set of detectors.

We test variations in 2D line detectors using two recently
proposed methods: ELSED [27] and DeepLSD [22]. Sim-
ilar to how we applied LSD [10] on panoramas, we first
make perspective crops of the panorama and apply the de-
tectors. As shown in Table B.2, our method shows consis-
tent performance amidst changes in the 2D line detectors.
The results suggest that our formulation is sufficiently gen-
eralizable and versatile to handle varying line detectors.

B.4. Full Experimental Results

We finally report the full evaluation results for pose refine-
ment in Stanford 2D-3D-S [2] and OmniScenes [14]. Note
that the results presented in Table 3 and 5 are the results ag-
gregated from the two datasets. Table B.3 and B.4 shows the
full results for pose refinement in regular setups and light-
ing variations. In both cases, our method shows competitive
performance against the visual descriptor-based methods
while constantly outperforming the geometry-based meth-
ods.

C. Baseline Details
In this section, we explain the implementation details of the
baselines compared against our method.

Pose Search Baselines We consider three types of base-
lines for comparison: neural network based (SFRS [8],
Cosplace [3]), color distribution-based (PICCOLO [14],
CPO [15]), and line-based (LDL [16], Chamfer [21],
SFRSL, CosplaceL). Neural network-based methods op-
erate by first extracting global feature descriptors for im-
age renderings in the 3D map and establishing comparisons
against that obtaine from the query image. We specifically
use the colored point clouds available in our test datasets to
render synthetic views. Color distribution-based methods
operate by directly comparing the color values between the
panorama and point cloud. PICCOLO [14] operates using a
loss function defined over various candidate poses that mea-
sures the color discrepancy between the point cloud projec-
tions and the panorama color values sampled from the pro-
jection locations. CPO [15] takes a more holistic approach

by comparing the patch-level color histograms of the query
and synthetic views in the point cloud. Line-based methods
solely utilize the geometry of the line maps for pose search.
LDL [16] uses line distance functions for pose search as
explained in Section 3, while Chamfer-based method [21]
uses the pairwise distances between the lines in 2D and 3D
for pose search. We additionally test variants of the neu-
ral network-based methods, namely SFRSL and CosplaceL,
that extracts global descriptors from the 2D line extractions
and those from synthetic views in 3D. As demonstrated in
Section 5.2, our method performs competitively against the
baselines by leveraging the holistic geometry of lines and
their intersections, while exhibiting a very short runtime due
to the efficient search scheme.

Pose Refinement Baselines Similar to pose search eval-
uation, we consider three types of baselines: line-based
(GlueStick [24], Line Transformer [29]), point-based (Su-
perGlue [25], LightGlue [20], LoFTR [26], PICCOLO [14],
CPO [15]), and geometry-based (GoMatch [31], BP-
nPNet [4], Gao et. al [7], PDF Minimization, LoFTRL,
SuperGlueL, LightGlueL, GlueStickL, Line TransformerL).
Line-based methods operate by matching visual descriptors
for lines and additionally for points, where we apply PnL-
RANSAC [1, 6] similar to Yoon et al. [29] on the point and
line matches to obtained refinement results.

Point-based methods can be further divided into neural
network-based methods (SuperGlue [25], LightGlue [20],
LoFTR [26]) and color matching-based methods (PIC-
COLO [14], CPO [15]). Neural network-based methods
match point descriptors using graph neural networks or
transformers, where we apply PnP-RANSAC [6, 12, 19] on
the matches to get a refined pose. Note for LightGlue [20]
we used the SuperPoint [5] keypoint descriptors as input to
the matcher. Both color matching-based methods tested in
our experiments minimize a loss function termed sampling
loss [14], which directly compares the point color values
against the panorama image’s color values at projected lo-
cations. Here, the distinction between PICCOLO and CPO
is in that CPO additionally exploits 3D score maps to place
weights on regions less likely to contain changes during
sampling loss optimization.

Finally, for geometry-based methods we specifically
test neural network-based methods (GoMatch [31], BP-
nPNet [4]), optimization-based methods (Gao et al. [7],
PDF minimization), and line image-based methods
(LoFTRL, SuperGlueL, LightGlueL, GlueStickL, Line
TransformerL). For neural network-based methods which
operate by matching learned descriptors for keypoint loca-
tions, we use SuperPoint [5] keypoint detections. In addi-
tion, as the bearing vector representation of GoMatch can-
not fully handle the 360◦ view of panoramas, we subdivide
the panoramas into Nsplit horizontally split regions and sep-

Dataset OmniScenes Stanford 2D-3D-S

Refinement Method
Visual
Desc.

Accuracy
(0.1m, 5◦)

Accuracy
(0.2m, 10◦)

Accuracy
(0.3m, 15◦)

Accuracy
(0.1m, 5◦)

Accuracy
(0.2m, 10◦)

Accuracy
(0.3m, 15◦)

Line-Based
Refinement

Line Transformer [29] ⃝ 0.88 0.92 0.93 0.70 0.72 0.73
Gluestick [24] ⃝ 0.89 0.93 0.94 0.68 0.71 0.72

Point-Based
Refinement

SuperGlue [25] ⃝ 0.90 0.95 0.95 0.71 0.72 0.73
LightGlue [20] ⃝ 0.93 0.95 0.95 0.71 0.72 0.73
LoFTR [26] ⃝ 0.88 0.94 0.95 0.67 0.69 0.69
PICCOLO [14] ⃝ 0.58 0.60 0.61 0.57 0.59 0.60
CPO [15] ⃝ 0.76 0.78 0.78 0.55 0.56 0.58

Geometric
Refinement

GoMatch [31] ✗ 0.67 0.84 0.88 0.57 0.65 0.67
BPnPNet [4] ✗ 0.01 0.18 0.41 0.05 0.24 0.41
Gao et. al [7] ✗ 0.11 0.43 0.74 0.26 0.63 0.62
PDF Minimization ✗ 0.28 0.52 0.63 0.18 0.31 0.38
LoFTRL [26] ✗ 0.06 0.26 0.55 0.10 0.33 0.47
SuperGlueL [25] ✗ 0.06 0.28 0.60 0.06 0.37 0.56
LightGlueL [20] ✗ 0.45 0.69 0.82 0.33 0.51 0.58
GlueStickL [24] ✗ 0.36 0.60 0.75 0.30 0.46 0.55
Line TransformerL [29] ✗ 0.05 0.24 0.54 0.07 0.31 0.47
Ours ✗ 0.77 0.89 0.91 0.62 0.66 0.67

Table B.3. Pose refinement evaluation in OmniScenes [14] and Stanford 2D-3D-S [2]. We retrieve top-1 poses using point distance
functions and perform refinement with various baseline methods. Note the superscript XL denotes that the baseline takes line images as
input.

Method
Visual
Desc. Orig. Intensity1 Gamma1 White

Balance1 Intensity2 Gamma2 White
Balance2 Range Std

Line Transformer [29] ⃝ 0.88 0.67 0.88 0.89 0.73 0.83 0.89 0.22 0.09
Gluestick [24] ⃝ 0.89 0.77 0.89 0.89 0.83 0.89 0.90 0.13 0.05

Line Transformer [29] ✗ 0.67 0.64 0.66 0.67 0.68 0.60 0.66 0.08 0.03
Gluestick [24] ✗ 0.36 0.47 0.45 0.30 0.51 0.29 0.31 0.22 0.09
Ours ✗ 0.77 0.72 0.75 0.77 0.75 0.72 0.77 0.05 0.02

Table B.4. Pose refinement evaluation under varying lighting conditions in OmniScenes [14]. We report the localization accuracy at 0.1m
and 5◦, along with their range and standard deviations. Note we test two levels of variations for each lighting change type, totalling six
variations.

arately apply GoMatch. We set Nsplit = 8 in all our ex-
periments, as this attained the highest performance. For
optimization-based methods, first Gao et al. [7] matches
lines geometrically by inspecting the amount of line over-
laps and then refines the matches by aligning line midpoint
distances and directions. PDF minimization is a conceived
baseline to test if point distance functions can be further
used for refining poses. Here we apply gradient descent
optimization on the cost function from Equation 6, using
Adam [17] with a step size of 0.1. Similar to pose search
evaluation, the line image-based methods considered here
also take the line images in 2D and 3D, and apply visual
descriptor-based matching to obtain the refined pose.

D. Details on Experiment Setup

Lighting Robustness Evaluation We elaborate on the
details of the lighting changes in Section 5.2, which are

used to evaluate the illumination robustness of our method.
As shown in Table B.4, we apply three types of color
variations to images in the entire Extreme split of Om-
niScenes [14]: average intensity, gamma, and white balance
change. For average intensity, we lower the pixel inten-
sity by 25% (Intensity1) and 33% (Intensity2). For gamma,
we test image gamma values with 0.3 (Gamma1) and 1.5
(Gamma2). For white balance, we apply the following lin-

ear transformations to the RGB values:

0.9 0 0
0 0.5 0
0 0 0.7

(White Balance1),

0.6 0 0
0 0.9 0
0 0 0.4

 (White Balance2).

Floorplan Localization Evaluation To test the gener-
alizability of our method against sparser line maps, we

Figure D.2. Visualization of lines in 2D and 3D extracted from the
floorplans in Structured3D [30] dataset. Given the raw floorplan
annotations and the room height information, we extract the 2D
and 3D floorplan lines.

evaluated localization performance using floorplans in
Section 5.4. Here we describe the details on the experiment
setup. As shown in Figure D.2, from the raw floorplan
annotations and known room height, we extract the 2D
and 3D lines. Then, without any modifications in the
hyperparameter setup, the lines are given as input to
our localization pipeline. Despite any floorplan-specific
tuning, our method performs competitively against the
state-of-the-art methods, as demonstrated in Section 5.3.

References
[1] Sérgio Agostinho, João Pedro Gomes, and Alessio Del Bue.

Cvxpnpl: A unified convex solution to the absolute pose esti-
mation problem from point and line correspondences. Jour-
nal of Mathematical Imaging and Vision, 65:492–512, 2019.
4

[2] Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 1, 4, 5

[3] Gabriele Berton, Carlo Masone, and Barbara Caputo. Re-
thinking visual geo-localization for large-scale applications.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4878–4888,
2022. 4

[4] Dylan Campbell, Liu Liu, and Stephen Gould. Solving
the blind perspective-n-point problem end-to-end with ro-
bust differentiable geometric optimization. In Proceedings
of the European Conference on Computer Vision (ECCV),
page preprint. Springer, 2020. 4, 5

[5] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPR Deep Learning for Visual SLAM
Workshop, 2018. 4

[6] Martin A. Fischler and Robert C. Bolles. Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography. Commun. ACM,
24(6):381–395, 1981. 4

[7] Shuang Gao, Jixiang Wan, Yishan Ping, Xudong Zhang,
Shuzhou Dong, Jijunnan Li, and Yandong Guo. Pose refine-
ment with joint optimization of visual points and lines. 2022
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 2888–2894, 2021. 4, 5

[8] Yixiao Ge, Haibo Wang, Feng Zhu, Rui Zhao, and Hong-
sheng Li. Self-supervising fine-grained region similarities
for large-scale image localization. In European Conference
on Computer Vision, 2020. 4

[9] Lee-Ad Gottlieb and Shay Solomon. Light spanners for
snowflake metrics. In Proceedings of the Thirtieth Annual
Symposium on Computational Geometry, page 387–395,
New York, NY, USA, 2014. Association for Computing Ma-
chinery. 2

[10] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. Lsd: A fast line seg-
ment detector with a false detection control. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(4):
722–732, 2010. 1, 3, 4

[11] Peter Hall. On representatives of subsets. Journal of The
London Mathematical Society-second Series, pages 26–30,
1935. 2

[12] J. A. Hesch and S. I. Roumeliotis. A direct least-squares
(dls) method for pnp. In 2011 International Conference on
Computer Vision, pages 383–390, 2011. 4

[13] W. Kabsch. A solution for the best rotation to relate two sets
of vectors. Acta Crystallographica Section A, 32(5):922–
923, 1976. 3

[14] Junho Kim, Changwoon Choi, Hojun Jang, and Young Min
Kim. Piccolo: Point cloud-centric omnidirectional localiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 3313–3323, 2021.
1, 3, 4, 5

[15] Junho Kim, Hojun Jang, Changwoon Choi, and Young Min
Kim. Cpo: Change robust panorama to point cloud localiza-
tion. ECCV, 2022. 4, 5

[16] Junho Kim, Changwoon Choi, Hojun Jang, and Young Min
Kim. Ldl: Line distance functions for panoramic localiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 17882–17892, 2023.
1, 2, 3, 4

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 3, 5

[18] William Leeb. Approximating snowflake metrics by trees.
Applied and Computational Harmonic Analysis, 45(2):405–
424, 2018. 2

[19] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
Epnp: An accurate o(n) solution to the pnp problem. Int. J.
Comput. Vision, 81(2):155–166, 2009. 4

[20] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. LightGlue: Local Feature Matching at Light Speed. In
ICCV, 2023. 4, 5

[21] Branislav Micusik and Horst Wildenauer. Descriptor free vi-
sual indoor localization with line segments. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3165–3173, 2015. 4

[22] Rémi Pautrat, Daniel Barath, Viktor Larsson, Martin R. Os-
wald, and Marc Pollefeys. Deeplsd: Line segment detection
and refinement with deep image gradients. In Computer Vi-
sion and Pattern Recognition (CVPR), 2023. 4

[23] Rémi Pautrat, Shaohui Liu, Petr Hruby, Marc Pollefeys, and
Daniel Barath. Vanishing point estimation in uncalibrated
images with prior gravity direction. In International Confer-
ence on Computer Vision (ICCV), 2023. 1

[24] Rémi Pautrat, Iago Suárez, Yifan Yu, Marc Pollefeys, and
Viktor Larsson. GlueStick: Robust image matching by
sticking points and lines together. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2023. 4, 5

[25] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. SuperGlue: Learning feature
matching with graph neural networks. In CVPR, 2020. 4,
5

[26] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. LoFTR: Detector-free local feature matching
with transformers. CVPR, 2021. 4, 5

[27] Iago Suárez, José M. Buenaposada, and Luis Baumela.
Elsed: Enhanced line segment drawing. Pattern Recogni-
tion, 127:108619, 2022. 4

[28] Lu Xiaohu, Liu Yahui, and Li Kai. Fast 3d line segment
detection from unorganized point cloud. arXiv preprint
arXiv:1901.02532, 2019. 1

[29] Sungho Yoon and Ayoung Kim. Line as a visual sentence:
Context-aware line descriptor for visual localization. IEEE
Robotics and Automation Letters, 6(4):8726–8733, 2021. 4,
5

[30] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,
and Zihan Zhou. Structured3d: A large photo-realistic
dataset for structured 3d modeling. In Proceedings of The
European Conference on Computer Vision (ECCV), 2020. 6

[31] Qunjie Zhou, Sérgio Agostinho, Aljoša Ošep, and Laura
Leal-Taixé. Is geometry enough for matching in visual local-
ization? In Computer Vision – ECCV 2022, pages 407–425,
Cham, 2022. Springer Nature Switzerland. 4, 5

	. Method Details
	. Input Preparation
	. Theoretical Analysis of Efficient Distance Function Comparison
	. Translation / Rotation Pool Generation
	. Hyperparameter Setup

	. Additional Experimental Results
	. Scalability against Number of Query Points
	. Additional Ablation Study for Pose Refinement
	. Robustness Against Line Detector Variations
	. Full Experimental Results

	. Baseline Details
	. Details on Experiment Setup

