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A. Implementation Details

A.1. Network Architectures

We implement our networks for predicting SDF and off-

sets, Ψh and Ψo, as a 2-layer MLP network with 32 hidden

units and ReLU activations except for the last layer. As in-

puts, each network takes the 3D Cartesian coordinates of

the vertices, XT , of the designated canonical DMTet grid,

(XT , T ). The coordinates are normalized between 0 to 1,

and encoded using a hash positional encoding [19] with 16

resolution levels and a maximum resolution of 1024. The

networks for predicting vertex colors, Γh and Γo, are im-

plemented using a 1-layer MLP network with 32 hidden

units and ReLU activations except for the last layer that uses

sigmoid activations. As inputs, each network takes the 3D

Cartesian coordinates of the vertices of the canonical human

mesh and object mesh, Mc
h and Mc

o. The coordinates are

similarly normalized between 0 to 1, and encoded using a

hash positional encoding with 16 resolution levels and a

maximum resolution of 2048.

A.2. Optimization Details

The total loss, Lgeo, for geometry modeling is as follows:
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hgeo
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where λrec
hgeo

= 5× 103, λrec
ogeo

= 5× 103, λseg
comp = 1× 105,

λSDS
hgeo

= 1, and λSDS
ogeo

= 1. We use AdamW optimizer with

a learning rate of 0.001 and optimize for 1600 steps, after

400 steps of the initialization process with Linit
h and Linit

o .

The total loss, Ltex, for appearance modeling is,
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*Equal contribution

where λrec
htex

= 1 × 108 and λrec
otex

= 1 × 108. λSDS
htex

= 0

and λSDS
otex

= 0 for the first 400 steps, and λSDS
htex

= 1 and

λSDS
otex

= 1 otherwise. We use AdamW optimizer with a

learning rate of 0.01 and optimize for 2000 steps. Each stage

takes about 20 minutes on a single NVIDIA RTX 3090.

A.3. Additional Details

Prompts for the SDS loss. For yh in ∇Ψh
LSDS
hgeo

and

∇Γh
LSDS
htex

, we use “A photo of a man/woman” as the pos-

itive prompt and “{target object}” as the negative prompt.

Note that we use “man” or “woman” based on the gender

provided by RenderPeople [21] and CAPE Dataset [17]. For

ycomp in ∇Ψo
LSDS
ogeo

and ∇Γo
LSDS
otex

, we use “A photo of a

man/woman wearing {target object}” as the positive prompt

and do not use any negative prompt. Following DreamFu-

sion [20], we incorporate view directions by concatenating

“front/side/back view” to each prompt based on the viewing

angle of the sampled camera.

Camera Sampling. We set the camera center using spher-

ical coordinate system, (r, θ, φ), where r denotes the radial

distance from the origin, θ denotes the elevation, and φ

denotes the azimuth angle. We set r = 3, and sample cam-

eras facing the origin from θ ∈ [− π
18 ,

π
9 ], and φ ∈ [0, 2π].

We also sample the field of view from U(π7 ,
π
4 ). We ad-

ditionally use zoomed-in views to capture fine details of

human faces and hands and to effectively synthesize the

missing regions where human and target object interact.

To render zoomed-in images, we translate and scale the

input mesh before the rendering process. For the zoomed-

in views for faces and hands, we translate the input mesh

using the corresponding joint information of the SMPL-X

mesh such that each joint locates at the origin, and scale

the input mesh by factor of 5 for rendering the face and 10

for rendering the hands. For the zoomed-in views for re-

gions where human and target object interact, we utilize the

bounding box information of the target object. Specifically,
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given the object bounding box xl = (xmin, ymin, zmin) to

xr = (xmax, ymax, zmax), we first translate the input mesh

by t ∼ U(xr+3xl

4 , 3xr+xl

4 ). We then scale the input mesh

by the factor of s ∼ U( 1
0.6max(xr−xl)

, 1
0.3max(xr−xl)

).

B. Evaluation Details

B.1. Decomposition

Baselines. To the best of our knowledge, there is no exist-

ing work that tackles the decomposition of a 3D scan. Hence,

we use the recent text-based 3D editing methods as baselines:

Instruct-NeRF2NeRF [8] and Vox-E [25]. For evaluation,

we use the official implementation for both methods. We

train nerfacto model [18] for Instruct-NeRF2NeRF and

ReLU field [13] for Vox-E with each scan. Since Instruct-

NeRF2NeRF is based on Instruct-Pix2Pix [3], the prompt

is given in the form of “instruction”; hence, the basic form

of prompts for Instruct-NeRF2NeRF is “Remove {target

object} from him/her” or “Change his/her {target object} to

a white t-shirt/shorts” to avoid getting naked body for single-

layered clothing. For Vox-E, the basic form of prompts is “A

photo of a man/woman without {target object}”.

POR metric. We propose a novel metric named pixel-wise

object removal score (POR Score) for quantitatively evaluat-

ing the decomposition performance. Specifically, we render

30 images per subject using the camera views with equally

distributed yaw angles. Then, we run the off-the-shelf open-

vocabulary image segmentation method, SAM [14], to get

the segmentation of the target object specified by the prompt.

Ideally, if the target object is properly decomposed or re-

moved, there should be no pixel classified as the target ob-

ject for the images rendered after decomposition. Hence,

we compute the ratio of the number of pixels classified as

the target object in the images after editing and the images

rendered from the input scan as follows:

POR =
1

|K|

∑

k∈K

∑

(i,j)∈M
input

k

1(SAM(Iedit
k

)ij = 1)

|Minput
k

|
, (3)

where K is a set of cameras for rendering, I
input
k

and I
edit
k

are images rendered from the input mesh and the edited

result, and M
input
k

is a segmentation mask of the I
input
k

which is defined as M
input
k

= {(i, j)|SAM(Iinput
k

)ij = 1}.

B.2. Canonicalization

Baselines. For Fast-SNARF [7], we use the official im-

plementation with the default hyperparameters except for

the skinning mode where we use the “preset” mode which

uses the nearest neighbor skinning weights, instead of the

original “mlp” mode which learns the skinning weights. This

is due to the training instability with limited training data as

mentioned in the main paper.

(a) Image (b) 3D reconstruction (c) Decomposition

Figure 1. Decomposing single-view 3D reconstructions. Our

method enables the generation of animatable layered assets from

2D images via 2D-to-3D reconstruction methods [1].

(a) 3D avatar (b) Decomposition

Figure 2. Decomposing diffusion-generated 3D assets. Our

method enables the generation of animatable layered assets from

texts via text-to-3D generation methods [16]. We show the result of

applying GALA on the avatar generated with the prompt, “Vincent

Van Gogh”.

Ablation. In our ablation study, we utilize the CAPE

dataset [17]. Since the dataset doesn’t provide texture data,

we employ an off-the-shelf mesh texturing tool [22] to add

color information to the input mesh and perform segmenta-

tion, which we find challenging to perform on the rendered

geometry or normals.

C. Additional Qualitative Results

In this section, we present additional qualitative results

of our method. Please refer to the supplementary video for

animated results.

Decomposing User-generated 3D Assets. GALA can de-

compose user-generated 3D assets from single-view 3D re-

construction methods [1, 2, 11, 23, 24, 27, 28] or 3D avatar

generation methods [4, 10, 15, 16, 29]. Fig. 1 shows the

decomposition result of the 3D human mesh reconstructed

from a 2D image with Human-SGD [1] and Fig. 2 shows

the decomposition result of the 3D avatar generated from

text with TADA [16]. These results demonstrate that GALA

enables the intuitive scenario for the users to create their own

reusable 3D assets from their images or text guidance.

Comparison on Canonicalization. We compare canoni-

calization results with baseline methods in Fig. 3.
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Figure 3. Qualitative comparison on canonicalization. We

present the results of single-scan canonicalization in the top two

rows. The bottom two rows depict the results of Fast-SNARF [7],

with varying numbers of training scans denoted in the parenthesis.

(a) Input scan (b) TightCap (c) Ours

Figure 4. Qualitative comparison with TightCap [6]. GALA

allows higher-quality decomposition compared to TightCap.

Comparison on Decomposition with TightCap [6].

TightCap [6] enables the decomposition of unclothed hu-

mans and clothing by leveraging paired 3D data of clothed

and unclothed human scans. We demonstrate a qualitative

comparison between GALA and TightCap in Fig. 4. As

shown, GALA produces higher-quality decomposition along

with texture and allows the separate decomposition of multi-

layered garments. Notably, GALA doesn’t require any 3D

training data whereas TightCap relies on hundreds of paired

clothed and unclothed 3D human scans.

Decomposition and Canonicalization. Fig. 12 is an ex-

tended figure of Fig. 5 in the main paper, which shows the

results of decomposition and canonicalization of input scans.

Layered Decomposition. Fig. 5 is an extended figure of

Fig. 1 in the main paper, which shows the strength of our

method to generate “layered” assets by applying series of

decomposition to the input scan. By composing back the

decomposed assets, our method enables the decomposition

of specific layers of clothing.

(a) Input scan (b) Layered decomposition

Figure 5. Layered decomposition. Our method enables the layered

decomposition of the input scan. Note that we can remove the

specific layer of clothing by recomposing the decomposed assets.
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Figure 6. Composition. Our method enables creation of newly-

dressed avatars which are fully animatable, by combining various

combinations of decomposed assets.

Composition. Fig. 6 is an extended figure of Fig. 1 in

the main paper, depicting the ability of our method for 3D

garment transfer and reposing.

Loose Clothing. Fig. 7 is an extended figure of Fig. 7 in

the main paper, which shows the advantage of our method

for modeling canonical shapes of loose clothing compared

to simple canonicalization methods [9, 12].



(a) Input scan (b) Ours (c) NN

Figure 7. Loose clothing. Our method successfully models canoni-

cal shapes of loose clothing.

(a) �! = 22 (b) �! = 21 (c) �! = 0 (d) �! = 1 (e) �! = 2

Figure 8. Size changes of decomposed assets. Our method enables

effortless size changes of decomposed assets by switching the

SMPL-X shape parameters.

(a) Input scan (c) w/ pose-guided SDS(b) w/o  pose-guided SDS

Figure 9. Canonicalization via pose-guided SDS loss. Applying

our pose-guided SDS loss in the canonical space enables robust

canonicalization from a single scan.

Size Changes. Fig. 8 shows the ability of our method

to efficiently change the shapes of decomposed assets by

altering the SMPL-X shape parameters.

Pose-guided SDS Loss. Fig. 9 is an extended figure of

Fig. 10 in the main paper. Our pose-guided SDS loss applied

in the canonical space effectively removes artifacts in the

canonical shape and enables correct canonicalization from a

single scan.

D. Discussion

SDS loss to Composition Mesh. In order to complete

geometry and appearance of the object, we apply our pose-

guided SDS loss to the composite mesh of human and ob-

ject instead of the object mesh itself. This is due the fact

that OpenPose [5] ControlNet [30] is trained to generate

Method IoU↑ Chamfer↓

Composite 83.59% 1.184

Object 83.50 % 1.205

Table 1. SDS loss to composite mesh. We show the effect of

applying SDS loss to composite mesh instead of object mesh.

(a) Input scan (b) Canonical 

geometry

(c) Reposed 

geometry

(d) Zoomed-in 

view

Figure 10. Failure case of reposing loose clothing. Since our

method generates static canonical shape, reposing a human with

loose clothing may result in severe artifacts between the legs.

(a) Input scan (b) Decomposed 

human (posed)

(c) Decomposed 

human (canonical)

(d) Decomposed 

object (canonical)

Figure 11. Failure case of canonicalization. Our method suffers

from correctly canonicalizing scans with hands in their pockets.

pose-guided human images. Hence, when given the posi-

tive prompt “{target object}”, and the negative prompt, “a

person”, it fails to exclusively generate the object without

humans as shown in Fig. 13. We also present a quantitative

comparison on canonicalization between applying SDS loss

to the composite mesh and to the object mesh in Tab. 1.

Limitations and Future Work. As mentioned in the main

paper, GALA currently models a static canonical shape with-

out considering pose-dependent deformations. Fig. 10 illus-

trates a failure case of reposing a human with loose clothing,

where severe artifacts of the dress appear between the legs.

Jointly modeling pose-dependent deformation of clothing

from a single scan can be a potential direction for future

work. Additionally, our method may encounter challenges

when canonicalizing input scans with difficult poses such

as humans with their hands in their pockets. As shown in

Fig. 11 (c), the hand partially remains inside the pocket after

decomposition, limiting the reuse of the decomposed human.



Nonetheless, the decomposed human can still be used in the

pose of the input scan as depicted in Fig. 11 (b), and the

decomposed object of Fig. 11 (d) can be utilized as any

other decomposed asset. The dependency on accurate 2D

segmentation can be also problematic if the 2D segmentation

module fails. Self-discovering each layer without requiring

2D segmentation is also an interesting future work.

Societal Impact. GALA decomposes a single static scan

into reusable and animatable assets, e.g. target apparel and

the underlying human body. Similar to other recent genera-

tive models and editing methods, our method may have both

positive and negative societal impacts depending on the us-

age. On the positive side, GALA can immediately generate

diverse reusable assets from existing 3D assets that have en-

tangled geometry, without template registration, additional

scanning, or editing by 3D designers. For the metaverse

applications, GALA enables users to easily digitize their

assets and clothe their avatars in the virtual world. On the

negative side, GALA may generate a naked underlying body

for the human scan with single-layered clothing unless the

input prompts are properly given. Since GALA utilizes SDS

loss [20] to leverage the prior from the pre-trained 2D dif-

fusion model, this problem can be alleviated via the NSFW

filter. Nonetheless, there are still potential problems, e.g. pri-

vacy violations, fake news, online sexual harassment, etc.,

like deepfake [26]. In our code release, we will specify the

correct use of our method. We believe that the malicious use

of generative models should be dealt with through both legal

regulation and technology to detect misuse cases. We hope

that our work invokes a serious discussion on such issues.



Figure 12. Decomposition and Canonicalization. In each set, we show the decomposition and canonicalization results of the leftmost input

scan.



<a scarf= <a shirt=

<a hat= <a jacket=

<a dress= <a skirt=

<jeans= <shorts=

Figure 13. Pose-guided Generation. In each set, we show the generated images of the target objects without OpenPose ControlNet on

the left, and with OpenPose ControlNet on the right. Diffusion model fails to exclusively generate target objects without humans when

OpenPose ControlNet is used for pose-guided SDS loss.
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