
GARField: Group Anything with Radiance Fields

Supplementary Material

A. Additional Results
We show additional figures and videos using GARField for
1) hierarchical decomposition, 2) global clustering, and 3)
interactive selection. All video visualizations use Gaussian
Splatting [12], as described below.

A.1. Gaussian Splat Visualizations

We use Gaussian Splatting [12] to emphasize the 3D nature
of GARField and its applications for 3D group extraction.
Here, for simplicity, we do not optimize GARField directly
with gaussians. Instead, we train a NeRF-based GARField
and a Gaussian Splatting model separately. Then, we assign
an affinity feature to every gaussian by querying the feature
field at the gaussian’s center point. We use these features
to manipulate the 3D scene, e.g. clustering, selection, and
filtering. All implementation described here will be made
public. To visualize clusters in 3D, we override each gaus-
sian’s color parameters to the RGB color of the colormap.

We found gaussian centroids align well enough with
the underlying feature field that querying only their center-
points was sufficient. For larger gaussians, this approxima-
tion becomes less accurate, however we found this to not
be an issue since large gaussians are explicitly culled early
in training, and after training tend to reside primarily in the
background of the scene, where the more important prob-
lem is geometry under-reconstruction.

A.2. 3D Hierarchical Decomposition

In the main text, we visualized hand-picked nodes from the
resulting hierarchy in Main Paper Fig. 6. Here, we exhaus-
tively visualize entire subtrees of selected scenes by select-
ing the primary region of interest (i.e. desk, dozer, bouquet).

A.2.1 Full Tree Visualizations

In Fig. 12 and in provided videos we visualize each layer
of the resulting tree organized by node depth in different
rows. Each node is shown colorized by the number of inter-
nal clusters, with the remainder of the tree drawn with low
opacity to give context. Note that nodes at the same level
do not necessarily correspond to the same scale because in-
termediate nodes are pruned.

One can see how each part is recursively broken into
subparts in lower layers of the tree, for example the statue
gets broken into the base and rest of the statue, followed by
shield, torso, hair, and etc. Videos of trees showcase the
view-consistency of 3D scene decomposition, with whole
objects being clustered together like the bear or dozer,

which can then be broken into coherent subparts. The low-
est levels of the tree contain very fine details such as petals
of flowers, or hooves of the sheep.

Additional Limitations: One consequence of scale-
conditioning is that object parts of different sizes branch off
the tree separately rather than all at once: multiple objects
on the same table may appear at different levels of the tree.
The tree generation in this work is a naive greedy algorithm,
which can result in spurious small groups at deeper levels,
as seen in the trees in the Supplement. Future work may
explore more sophisticated ways of hierarchical clustering.

Note how some nodes can contain noise or partial clus-
ters, for example the third row, last node of Fig. 12, where
the red cluster is a spurious cluster which more suitably be-
longs to the base of the statue in the prior tree level. We
believe artifacts like this happen for two main reasons: 1)
affinity feature vectors within an object vary smoothly with
scale, and sampling a scale within this changing region (i.e.
between two modes of a segmentation of an object) can
produce more ambiguous affinities between the two modes.
Since the tree construction algorithm samples scales at a set
interval, these scales could land on such a boundary region,
producing spurious clusters. This effect can be especially
severe at the boundaries of objects, where affinities between
scales must drastically change. One potential approach to
remedy this could be adapting the scale within a small win-
dow at each tree node to minimize cluster variance, which
would bias towards tightly coupled clusters. 2) The tree
construction algorithm is greedy, meaning any node split is
final. Allowing the algorithm to search and backtrack while
optimizing for metrics like minimizing cluster variance or
tree size could prove beneficial.

Sometimes spurious background points are grouped to-
gether with the object of interest, a behavior which could be
remedied by more strongly taking geometric proximity into
account when constructing the tree. We hypothesize this
may occur when distant points do not share enough com-
mon viewpoints, meaning there is no contrastive loss push-
ing their embeddings apart. This might be addressed by ap-
plying a small regularizing contrastive loss to all points in
3D whether observed together or not. Another failure mode
is that when view coverage is insufficient, different sides of
the same object can be grouped separately. For example, in
rows 3 and 4 of Fig. 12 the two sides of the statue’s face are
grouped differently.
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Figure 12. Complete Tree: A complete visualization of all layers and all nodes in the tree from Fig. 6. Colors illustrate different clusters
within each node, and each row visualizes all the nodes at a given depth in the tree, sorted by size.
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A.2.2 Compressed Tree Visualizations

We additionally provide videos of compressed trees, where
each layer of the tree is merged into one visual by distinctly
coloring all clusters. Leaf nodes at one layer are further
propagated to deeper layers of the tree to visualize all clus-
ters at the lowest level, corresponding to the most granular
decomposition. Though these visualizations do not show
hierarchy because they merge all nodes, they illustrate how
lower layers of the scene decomposition correspond to se-
mantically meaningful high granularity and higher levels
correspond to coarser granularities.

A.3. Multi-Scale Clustering

We provide video versions of Main Paper Fig. 7 to show-
case the view-consistency of the results shown in the im-
ages. These videos first show the global clustering of the
scene, followed by video renderings of sub-object clusters.

A.4. Global Clustering

To emphasize that GARField can model scene-level group-
ings, we cluster GARField features globally i.e. all gaus-
sians in a scene. Figures 14 through 20 show all scenes in
Fig. 7 globally clustered at scales 0 to 1, at increments of
0.05.

We also include a video where the excavator scene in
Main Paper Fig. 1 is globally clustered at three distinct
scales. We find that GARField successfully groups together
large group in the backgrounds, like the road or bushes on
the sidewalk.

A.5. Interactive Selection

People can use clicks to interact with GARField and extract
groups of different sizes, as shown in Fig. 5 of the main pa-
per. User clicks are transformed into 3D points using pro-
jective geometry (visualized with a red sphere in the video).
At a given scale, we select a set of 3D gaussians based on
their affinity with the selected point. To retrieve multiple
groups, we query GARField across a range of scales and
merge groups with large overlap. In the video, a user can
extract the excavator, crane, and scooper from Fig. 1 with a
single click.

B. Experiment details
B.1. Hierarchical Decomposition

Once we select a cluster of interest, we construct a tree by
recursively clustering with HDBSCAN. For this process we
use an HDBSCAN cluster epsilon of 0.1 and a minimum
cluster size of 40, fixed for all experiments. The tree is con-
structed greedily in a depth-first search, by recursing only
on non-noise clusters (see Sec. ). Note that because we add
noise clusters back to the tree after constructing it, this can

Figure 13. Masks for 3D Completeness Experiments: Overlap-
ping masks (egg, noodles, nori masks inside ramen mask) model
the desired hierarchical groupings. We labeled these polygonal
masks using ‘Make Sense’ [30], an online tool for mask annota-
tion.

result in small disappearing regions, like in the lower levels
of the succulent scene. These artifacts would better be ad-
dressed with a non-greedy tree construction, which we hope
to address in future work.

To speed tree contruction, we first sub-sample the in-
put gaussian splat with Open3D’s voxel-downsampling to
reduce the resolution of points to 0.01× the scale being
queried, for example an affinity of 0.1 scale downsamples
to .001 voxel resolution. After tree construction, the result-
ing tree is pruned to remove chains of nodes with one child
and one parent.

B.2. Treatment of Clustering Noise

One challenge to overcome is the fact that HDBSCAN can
output ‘noise’ clusters, which do not get any cluster la-
bels. These can arise because of gaussians which do not
align well with NeRF geometry, features which are noisy
because they lie on the boundary of two groups, or noise in
the trained affinity field. To handle these noise clusters, we
assign labels to gaussians considered noise with the label
of the nearest physical clusters computed in the Euclidean
space, as opposed to the feature space. We find this pro-
duces more cohesive results than soft clustering within the
feature space itself. During global clustering (Figs. 11, 7)
these noise clusters are assigned to clusters across the entire
scene, and during tree decomposition (Fig. 6) these noise
clusters are locally assigned from the clusters available at
each node only.
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B.3. 3D Completeness Experiment

B.3.1 Ground Truth Annotation

We annotate ground truth segmentation masks on a ran-
domly selected novel view using the online tool ‘Make
Sense’ [30], employing a polygon shape for the annotation.
In Fig. 13, we present the visualization on our state during
the data annotation process.

The annotation process begins with the assignment of a
specific label point to each target object within a given view.
Note that the selection of the view is randomized, involving
zooming in, zooming out, or changing the angle to enhance
the evaluation of view consistency effectively. These label
points serve as the basis for the subsequent mask annota-
tion, which are made at a varying level of granularity. As a
case in Fig. 22, in the bouquet scene, considering the click
points from different angles, we annotate the masks at dif-
ferent hierarchical levels: the petal of the flower (fine level),
the individual flower (medium level) and the whole bou-
quet (coarse level). For ground truth masks in other scenes,
we follow similar rules, building a mask hierarchy based on
the semantic meaning, ranging from fine part of the object
to coarse whole object. However, note that the number of
mask levels may vary depending on the complexity and the
nature semantics in the scene. For example, the bear’s arm
in the teatime scene, Fig. 21, is only annotated with two
levels of hierarchy: the left hand and the whole bear.

B.3.2 Complete Visualizations

A comprehensive presentation of the evaluation results re-
garding to the view consistency of GARField is shown in
Figs. 21, 22, 23, 24, 25. This includes all the scenes not
shown in the main text. For each scene, we show the
clicked label points for the annotated randomly selected
views, ground truth masks at different hierarchical levels
and the comparison of the closest masks obtained by SAM
and GARField. We also provide the zoomed-in images of
the results for better visualization.

B.4. Hierarchical Grouping Recall Experiment

B.4.1 Ground Truth Annotation

In this experiment, we annotate one novel view for each of
the five scenes. For each novel view, we mark one or several
objects which has a rich hierarchy. The ground truth masks
are any parts, subparts, or the entire object of the scene that
can be considered as groups by a human. Taking the ramen
scene (Figs. 13, 26) as an example, the parts or subparts of
the objects labeled include nori, egg, egg yolk, noodles, and
so on. Additionally, the complete soup and the entire ramen
bowel is also annotated as a group. Unlike the experiments
on 3D completeness, this experiment aims to test whether
the model can extract all the reasonable masks of the objects

which contain rich hierarchy. Therefore, we did not stratify
the level of the annotated masks.

B.4.2 Complete Visualization

In Fig. 26, We show the ground truth masks as well as all the
methods masks at the finest masks. Note that all the ground
truth masks are arranged in descending order of size. In our
experiment, we systematically recover all the masks that
corresponds to the annotated ground truth through differ-
ent method. For each distinct method employed, which are
SAM, GARField without scale condition, GARField with-
out dense supervision, we sequentially showcase the masks
that get the highest IOU score of the correspondence to the
ground truth masks. We will release all the ground truth
annotations for all experiments.
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Figure 14. Global Clustering Results (“Bouquet”): Global clusters at smaller scales (s = 0) distinguish between different sections of
the bouquet, as well as the two halves of the table. At a larger scale, the bouquet and table are considered whole.
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Figure 15. Global Clustering Results (“Desk”): At larger scales (s = 0.5), the desk is grouped together with the clutter on it e.g.
keyboard, card, bird figurine).
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Figure 16. Global Clustering Results (“Donuts”): At a very small scale (s = 0.0), GARField can distinguish between different pieces
of the breakfast sandwich in the middle of the scene. As scale increases, its grouping shifts quite noticably — into its two halves, or the
full sandwich with the checkerboard packaging.
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Figure 17. Global Clustering Results (“Table”): At the smallest scale (s = 0.0), the global clusters highlight parts of objects e.g. labels
on water bottles, pieces of chocolate.
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Figure 18. Global Clustering Results (“Teatime”): The food, utensils, and the table are included in different clusters at small scales, and
the same cluster at larger scales. Parts of the stuffed animals (e.g. sheep hooves, bear nose) can also be seen at s = 0.0.
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Figure 19. Global Clustering Results (“Succulent”): Global clusters at smaller scales (s = 0.0) distinguish between fine features like
succulent leaves, while they are considered a single group at larger scales (s = 1.0).
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Figure 20. Global Clustering Results (“Living Room”: The individual hexagonal tiles on the floor may be grouped separately (s = 0.0)
or together (s = 0.5).
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Figure 21. View Consistency Experiment-Teatime: We constructed two hierarchies, which are fine and medium. These correspond to
the semantic meanings of the bear’s left hand and the whole bear, respectively.
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Figure 22. View Consistency Experiment-Bouquet: We constructed three hierarchies, which are fine medium and coarse. These corre-
spond to the semantic meanings of the petal of the flower, the individual flower and the whole bouquet, respectively.
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Figure 23. View Consistency Experiment-Keyboard: We constructed two hierarchies, which are fine and medium. These correspond to
the semantic meanings of single key and the whole keyboard, respectively.
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Figure 24. View Consistency Experiment-Ramen: We constructed three hierarchies, which are fine, medium and coarse. These corre-
spond to the semantic meanings of egg yolk , one single egg and the whole soup area, respectively.
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Figure 25. View Consistency Experiment-Living room: We constructed two hierarchies, which are fine medium and coarse. These
correspond to the semantic meanings of the small orange part of the nerf gun, medium blue part of the nerf gun and the whole nerf gun,
respectively.
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Figure 26. Hierarchical Grouping Recall Experiments: We concentrate on methods such as SAM and the ablation study of GARField.
GARField outperforms SAM in obtaining finer, smaller masks (e.g. capturing all the tiny keys in a keyboard scene). Unlike GARField
without hierarchy grouping, GARField achieves more layered grouping results (e.g. in the ramen scene, it successfully identifies the entire
ramen mask through hierarchical clustering). Furthermore, compared to GARField without dense supervision, GARField provides more
stable and thorough grouping outcomes (e.g. in the teatime scene, GARField more comprehensively identifies the small labels on the
cookie bag).
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