
Higher-order Relational Reasoning for Pedestrian Trajectory Prediction

Supplementary Material

This supplementary material provides additional explana-
tions and experimental results of our paper ‘Higher-order
Relational Reasoning for Pedestrian Trajectory Prediction’.
First, we formulate our proposed collision-aware kernel
function in detail. Next, we elaborate on how our High-
Graph is implemented into each baseline. Furthermore, we
present more qualitative examples that demonstrate the ad-
vantages of HighGraph. Finally we conclude with discus-
sions of limitations and direction of our future work.

1. Collision-aware Kernel Function
As mentioned in our main paper, the proposed collision-
aware kernel function quantifies the pair-wise interactions
based on the observed movement from the previous times-
tamp. First, we construct a graph G(t) for each timestamp
t ∈ {1, 2, ..., T}, where T is the total number of observed
timestamps. We consider agents in the scene as nodes and
their connections as edges. The connections are encoded
in the adjacency matrix A ∈ RT×N×N , where N is the
number of agents in the scene. Then for each A(t) ∈ A,
its elements {a(t)ij |∀i, j ∈ {1, 2, ..., N}} are initialized as
follows:

a
(t)
ij =

{
0, if i = j

1, otherwise.
(1)

Next, our collision-aware kernel function takes these ad-
jacency matrices as input, and updates their elements. As
mentioned in the main paper, our collision-aware kernel
function is designed based on the prior that the pedestrians
in a crowd walk in a way that avoids collisions. Therefore,
we explicitly compute the potential collision points for all
agent pairs in each timestamp.

The potential collision point for each pair is computed
by the intersection of two half-lines, each of which starts
from the agent’s previous location P and passes the current
location Q. For example, the potential collision point for an
agent pair {i, j} at time t can be formulated as:

C
(t)
ij = (x

(t)
ij , y

(t)
ij ) =

−−→
PiQi ∩

−−−→
PjQj . (2)

Then, if the intersection exists (i.e. ∃Cij ∈ R2), the func-
tion assigns weights reciprocally to the distance from the
agents to the potential collision point. In other words, the
function weighs a higher value for the pairs with imminent
potential collision and a lower value for the pairs with re-
mote potential collision. What also matters is the distance
between each agent. It can distinguish the pairs with the
same distance to the potential collision point, but with dif-
ferent distances between the agents. Therefore, the inverse

Algorithm 1 Collision-aware Kernel Function

Input: Number of agents N , Number of timestamps T
1: Initialize adjacency matrices A ∈ RT×N×N (Eq.1)
2: for each t ∈ {1, 2, ..., T} do
3: if t == 1 then
4: continue
5: else
6: for each i ∈ {1, 2, ..., N} do
7: for each j ∈ {i+ 1, i+ 2, ..., N} do
8: Pi, Qi ← (x

(t−1)
i , y

(t−1)
i ), (x

(t)
i , y

(t)
i )

9: Pj , Qj ← (x
(t−1)
j , y

(t−1)
j ), (x

(t)
j , y

(t)
j )

10: C
(t)
ij = (x

(t)
ij , y

(t)
ij )←

−−→
PiQi ∩

−−−→
PjQj (Eq.2)

11: if ∃Cij ∈ R2 then
12: d

(t)
ij ← ∥Qi −Qj∥2

13: a
(t)
ij ← 1/

(
d
(t)
ij

∑
e∈{i,j} ∥C

(t)
ij −Qe∥2

)
14: a

(t)
ji ← 1/

(
d
(t)
ij

∑
e∈{i,j} ∥C

(t)
ij −Qe∥2

)
15: else
16: a

(t)
ij ← 0

17: a
(t)
ji ← 0

18: if t == 2 then
19: a

(t−1)
ij ← a

(t)
ij ∀i, j ∈ {1, 2, ..., N}

Output: Updated adjacency matrices

of the multiplication of the two distance values is assigned
as an updated weight for each pair. The overall formula-
tion of the collision-aware kernel function is summarized in
Algorithm 1. Additionally, in Figure 1, we provide a visual-
ization of how our collision-aware kernel function finds the
potential collision point for each consecutive timestamp.

2. Implementation Detail
Our HighGraph module is designed to be plug-and-play,
which is put together with existing trajectory predictors
to provide fruitful higher-order relational feature embed-
dings. In this section, we describe how HighGraph is im-
plemented in our selected baselines: Social-GAN [3], So-
Phie [6], Social-STGCNN [5], BiTraP [9], SocialVAE [8]
and EigenTrajectory [1]. For all baselines, the rest of the
modules and settings that are not mentioned in this section
are left untouched. The details of the hyperparameters are
reported in Table 1.

2.1. Social-GAN + HighGraph

Social-GAN proposes a pooling module to encode social in-
teraction among agents. We place our HighGraph before the



Figure 1. An illustration of how our collision-aware kernel function finds the potential collision points in four timestamps.

pooling module to first provide the model with more com-
prehensive social features. In detail, HighGraph takes the
features generated from their existing LSTM [4] encoder as
input, and the learned features of HighGraph are then deliv-
ered to the pooling module.

2.2. SoPhie + HighGraph

SoPhie models social and physical interactions jointly using
an attention mechanism. However, due to the absence of
the image features in their repository, we implement High-
Graph on SoPhie-TA, which obtains social features only
with the social attention module. In our experiment, we lo-
cate HighGraph between the feature extraction module and
the attention module of SoPhie.

2.3. Social-STGCNN + HighGraph

Social-STGCNN is a representative graph-based trajectory
prediction method. First, we enhance their existing inter-
action modeling with our collision-aware kernel function.
Additionally, since our higher-order graph convolution of
HighGraph includes the existing pair-wise graph convolu-
tion, we replace it with our module.

2.4. BiTraP + HighGraph

We implement HighGraph on BiTraP-NP, a non-parametric
model of BiTraP, and plug our HighGraph parallel to the
original encoder of BiTraP. Since BiTraP uses RNN to con-
dense the temporal movements of the agents as one hidden
feature, we also place one gated recurrent unit (GRU) [2]
layer after HighGraph operation to match the feature di-
mensions. Then, the features are column-concatenated and
mapped into the CVAE [7] latent space.

2.5. SocialVAE + HighGraph

SocialVAE is a recent CVAE-based trajectory prediction
method that models time-wise CVAE latents. Similar to
the implementation of BiTraP, our HighGraph is placed par-
allel to its existing observational encoder, and the features
are column-concatenated. However, unlike BiTraP, the con-

catenation is done for the features in each timestamp to be
aligned with their main contribution.

2.6. EigenTrajectory + HighGraph

EigenTrajectory is a recently introduced plug-and-play
method for pedestrian trajectory prediction that transforms
the raw data into the proposed EigenTrajectory space. In
our experiment, we attach HighGraph at the end of the Eu-
clidean space decoder module. The baseline module is set
as EigenTrajectory+SGCN.

3. Qualitative Analysis
In this section, we provide more examples from qualitative
experiments that demonstrate the benefits of HighGraph.
First, we visualize the single-agent predictions with the
SDD dataset in Figure 2. Then, in Figure 3, we present
more predictions of multi-agent higher-order scenarios.

3.1. Single-agent General Prediction.

Similar to the reported analysis in the main paper, High-
Graph noticeably improves the baseline performance in
a single-agent prediction. Especially, HighGraph signif-
icantly reduces the number of socially-unacceptable tra-
jectories. Also, we observe that by incorporating High-
Graph, the baselines become better at capturing the non-
linear movements of the agents.

3.2. Multi-agent Higher-order Prediction.

Continuing from section 5.6.2 of the main paper, we present
more results in higher-order social scenarios with multiple
agents in the scene.

Scenario 5. In this scenario, a stationary agent (yellow)
influences the green agent to walk to its right (first-order). It
also influences the red agent to walk to its left (first-order).
Then, the red agent encounters the green agent and slows
down (second-order). This whole interaction between the
three agents affects the purple agent to walk to its left (third-
order), and the blue agent moves accordingly to the purple
agent (fourth-order).



Method Hyperparameter ETH HOTEL UNIV ZARA1 ZARA2 SDD
Social-GAN [3] Epoch 200 200 200 200 200 200
+ HighGraph Learning Rate 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4

Batch Size 64 64 64 64 64 64
Graph Layers 1 1 1 1 1 1

Higher-order Obs. 3 3 3 3 3 3
Hidden Dim 64 64 64 64 64 64

SoPhie [6] Epoch 250 250 250 250 250 250
+ HighGraph Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

Batch Size 1 1 1 1 1 1
Graph Layers 2 2 2 2 2 2

Higher-order Obs. 3 3 3 3 3 2
Hidden Dim 64 64 64 64 64 64

Social-STGCNN [5] Epoch 250 250 250 250 250 250
+ HighGraph Learning Rate 1e-2 1e-2 1e-2 1e-2 1e-2 1e-2

Batch Size 128 128 128 128 128 128
Graph Layers 2 2 2 2 2 2

Higher-order Obs. 2 2 2 2 2 2
Hidden Dim 5 5 5 5 5 5

BiTraP [9] Epoch 50 50 50 50 50 50
+ HighGraph Learning Rate 1e-3 5e-3 5e-3 5e-3 5e-3 5e-3

Batch Size 128 64 64 64 32 32
Graph Layers 3 3 1 2 1 3

Higher-order Obs. 3 3 2 5 3 3
Hidden Dim 32 32 32 32 32 32

SocialVAE [8] Epoch 1000 800 200 600 600 600
+ HighGraph Learning Rate 4e-4 8e-4 1e-3 2e-4 4e-4 3e-4

Batch Size 32 32 128 128 128 512
Graph Layers 1 1 1 1 1 5

Higher-order Obs. 3 3 3 3 3 2
Hidden Dim 64 64 64 64 64 64

EigenTrajectory [1] Epoch 256 256 256 256 256 200
+ HighGraph Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-3 5e-4

Batch Size 128 128 128 128 128 128
Graph Layers 2 2 2 2 2 3

Higher-order Obs. 3 2 3 3 3 2
Hidden Dim 128 128 128 128 128 128

Table 1. This table details the best-performing hyperparameters for each baseline. We mainly follow the default configurations provided
by each repository, but some were inevitably manipulated due to the reproduction issue. After reproducing the metrics reported from each
paper, we fix the default hyperparmeters, and conduct extensive experiments on the HighGraph hyperparameters which are the number of
graph layers, the higher-order observation degree, and the graph hidden dimension.

Scenario 6. The two parallel walking agents (first-order)
affect the yellow agent to stir to its left (second-order).
Then, the yellow agent runs into the red and green agents
from its left and turns right (third-order). The red and green
agents accordingly slow down due to the movement of the
yellow agent (fourth and fifth-order).

Scenario 7. The blue and gray agents are stationary in this
scenario (first-order). Their position affects the trajectories
of the yellow agent to slightly move to its left (second-

order). Then the yellow agent runs into the red agent
and both walk to their right to avoid collision with each
other (third-order).

Scenario 8. In this scenario, the red and the purple agent
first bend the trajectory of the green agent (first-order).
This further influences the blue agent to turn right (second-
order). Then, the gray agent encounters the blue agent and
turns right (third-order).

Through the results of these examples, we observe that



Figure 2. Visualization of the qualitative influence of HighGraph. We illustrate the result of SDD dataset, comparing the original model
and the HighGraph-plugged model. Best viewed in color.

Figure 3. Visualization of how HighGraph can improve the predictions in higher-order social scenarios. Best viewed in color.

HighGraph conspicuously enhances the performance in
higher-order scenarios. This is due to the explicit model-
ing of the collision with our collision-aware kernel function
and the higher-order graph convolutions that encodes social
influences from multiple distances.

4. Limitation and Future Work

HighGraph models the higher-order social dynamics only
with the positional data. Therefore, as mentioned in Sec-
tion 5.5 of our main paper, the benefits are minimal in cases
where only a small number of pedestrians are present. To

overcome this limitation, we plan to extend our model to
incorporate heterogeneous data (e.g. images, texts) and dis-
cover more semantics that can complement the lack of data.

References
[1] Inhwan Bae, Jean Oh, and Hae-Gon Jeon. Eigentrajectory:

Low-rank descriptors for multi-modal trajectory forecasting.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10017–10029, 2023. 1, 3

[2] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and
Yoshua Bengio. Empirical evaluation of gated recurrent



neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 2

[3] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and
Alexandre Alahi. Social gan: Socially acceptable trajectories
with generative adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 2255–2264, 2018. 1, 3

[4] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997. 2

[5] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and
Christian Claudel. Social-stgcnn: A social spatio-temporal
graph convolutional neural network for human trajectory pre-
diction. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 14424–14432,
2020. 1, 3

[6] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hi-
rose, Hamid Rezatofighi, and Silvio Savarese. Sophie: An at-
tentive gan for predicting paths compliant to social and phys-
ical constraints. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 1349–
1358, 2019. 1, 3

[7] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning struc-
tured output representation using deep conditional generative
models. Advances in neural information processing systems,
28, 2015. 2

[8] Pei Xu, Jean-Bernard Hayet, and Ioannis Karamouzas. So-
cialvae: Human trajectory prediction using timewise latents.
In Computer Vision–ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part IV,
pages 511–528. Springer, 2022. 1, 3

[9] Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Va-
sudevan, and Xiaoxiao Du. Bitrap: Bi-directional pedestrian
trajectory prediction with multi-modal goal estimation. IEEE
Robotics and Automation Letters, 6(2):1463–1470, 2021. 1, 3


	. Collision-aware Kernel Function
	. Implementation Detail
	. Social-GAN + HighGraph
	. SoPhie + HighGraph
	. Social-STGCNN + HighGraph
	. BiTraP + HighGraph
	. SocialVAE + HighGraph
	. EigenTrajectory + HighGraph

	. Qualitative Analysis
	. Single-agent General Prediction.
	. Multi-agent Higher-order Prediction.

	. Limitation and Future Work

