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Supplementary Material

A. Details of Method
A.1. Details of Prompt

We provide the complete prompts for extracting triplets
from paraphrased captions (Table 5) and from original cap-
tions (Table 6). Moreover, we provide those for aligning
entity classes (Table 7), and predicate classes (Table 8) with
entity and predicate classes in the target data, respectively.

Task Description
From the given sentence, the task is to extract meaningful triplets formed as <subject, predicate, object>.
To extract meaningful triplets from the sentence, please follow the following two steps.
Step 1: Paraphrase the sentence.
Step 2: From the paraphrased sentence obtained in the Step 1, extract meaningful triplets formed as <subject, predicate, object>,
Note that the subject is the entity or noun that performs the action or is being described, and the object is the entity
or noun that is affected by the action or is receiving the action. The predicate is a verb or adjective without auxiliary verb.
In-context Examples
Let’s take a few examples to understand how to extract meaningful triplets.
Question: Given the sentence "a slice of bread is covered with a sour cream and guacamole,” extract meaningful triplets.
Answer: Step 1: The sentence can be paraphrased as:
A piece of bread is topped with both sour cream and guacamole.
Step 2: Meaningful triplets, where the subject and object are the simple noun, extracted from the paraphrased sentence are:
<bread, topped with, sour cream>, <bread, topped with, guacamole>.
The meaningful triplets are <bread, topped with, sour cream>, and <bread, topped with, guacamole>.
Question: Given the sentence "A beautiful woman walking a dog on top of a beach,” extract meaningful triplets,
Answer: Step 1: The sentence can be paraphrased as
A lovely woman strolling with a dog on the beach.
Step 2: Meaningful triplets, where the subject and object are the simple noun, extracted from the paraphrased sentence are:
<woman, strolling with, dog>, <woman, on, beach>, <dog, on, beach>.
‘The meaningful triplets are <woman, strolling with, dog>, <woman, on, beach>, and <dog, on, beach>.
Question: Given the sentence "Four clock sitting on a floor next to a woman’s feet,” extract meaningful triplets.
Answer: Step 1: The sentence can be paraphrased as:
Four clocks are placed on the floor beside a woman’s feet
Step 2: Meaningful triplets, where the subject and object are the simple noun, extracted from the paraphrased sentence are:
<clocks, placed on, floor>, <clocks, beside, feet>
‘The meaningful triplets are <clocks, placed on, foor> and <clocks, beside, feer>.
Question: Given the sentence "One person sits in a chair looking at her phone while another rests on the couch,”
extract meaningful triplets.
Answer: Step 1: The sentence can be paraphrased as:
A person is seated in a chair, using their phone, while someone else is relaxing on the couch
Step 2: Meaningful triplets, where the subject and object are the simple noun, extracted from the paraphrased sentence are:
<person, seated in, chair>, <person, using, phone>, <person, relaxing on, couch>.
‘The meaningful triplets are <person, seated in, chair>, <person, using, phone>, and <person, relaxing on, couch>.
Question: Given the sentence "A lady and a child near a park bench with kites and ducks flying in the sky and on the ground,
extract meaningful triplets.
Answer: Step 1: The sentence can be paraphrased
A woman and a child are close to a park bench, w
Step 2: Meaningful triplets, where the subject and object are the simple noun, extracted from the paraphrased
<woman, close to, park bench>, <child, close to, park bench>, <kites, soar through, sky>, <ducks, move around, grounds>
‘The meaningful triplets are <woman, close to, park bench>, <child, close to, park bench>, <Kites, soar through, sky>,
and <ducks, move around, ground>.
Question: Given the sentence "Two men sit on a bench near the sidewalk and one of them talks on a cell phone,”
extract meaningful triplef
Answer: Step 1: The sentence can be paraphrased as:
Two guys are seated on a bench near the road, and one of them talks on a mobile phone.
Step 2: Meaningful triplets, where the subject and object are the simple noun, extracted from the paraphrased sentence are:
<guys, seated on, bench>, <bench, near, road>, <guy, talks on, phone>.
‘The meaningful triplets are <guys, seated on, bench>, <bench, near, road>, and <guy, talks on, phone>
Actual Question
Question: Given the sentence Input, extract triplets. Answer:

e kites soar through the sky and ducks move around on the ground.
ntence are:

Table 5. Prompt for triplet extraction from paraphrased caption.

A.2. Aligning entity classes within a larger prede-
fined lexicons

When aligning a query entity with entity classes in the Vi-
sual Genome and GQA datasets via an LLM, we list 150
and 200 entity classes in the prompt, respectively. However,
as the number of of entity classes increases, we would need
to add the entity classes in the prompt, which would eventu-
ally reach the maximum prompt length (e.g., 4096 tokens in
ChatGPT). This makes it impossible to align a query entity
with entity classes in a large predefined lexicon. To address
it, as shown in Figure 5, we can construct several prompts in
a hierarchical way. More precisely, for 1,594 entity classes
in VinVL [52] as an example of a large predefined lexicon,

Task Description
From the given sentence, the task is to extract meaningful triplets formed as <subject, predicate, object>.
Note that the subject is the entity or noun that performs the action or is being described, and the object
is the entity or noun that is affected by the action or is receiving the action. The predicate is a verb or
adjective without auxiliary verb, and is represented without the tense.
In-context Examples
Let’s take a few to d how to extract triplets.
Question: Given the sentence "a slice of bread is covered with a sour cream and guacamole,”
extract the meaningful triplets.
Answer: Meaningful triplets are <bread, covered with, sour cream>, and <bread, covered with, guacamole>.
Question: Given the sentence "A beautiful woman walking a dog on top of a beach,"
extract meaningful triplets.
Answer: Meaningful triplets are <woman, walking with, dog>, <woman, on, beach>, and <dog, on, beach>.
Question: Given the sentence "Four clock sitting on a floor next to a woman’s feet,"
extract the meaningful triplets.
Answer: Meaningful triplets are <clock, sitting on, floor> and <clock, next to, feet>.
Question: Given the sentence "One person sits in a chair looking at her phone while another rests on the couch,”
extract meaningful triplets.
Answer: Meaningful triplets are <person, sits in, chair>, <person, looking at, phone>,
and <person, rests on, couch>.
Question: Given the sentence "A lady and a child near a park bench with kites and ducks flying in the sky and
on the ground," extract meaningful triplets.
Answer: Meaningful triplets are <lady, near; park bench>, <child, near; park bench>, <kites, flying in sky>,
and <ducks, on, ground>.
Question: Given the sentence "Two men sit on a bench near the sidewalk and one of them talks on a cell phone,”
extract meaningful triplets.
Answer: Meaningful triplets are <men, sit on, bench>, <bench, near, sidewalk>, and <man, talks on, phone>.
Actual Question
Question: Given the sentence Input, extract i triplets. Answer:

Table 6. Prompt for triplet extraction from original caption.

Task Description
‘The predefined entity lexicon containing 150 lexemes is numbered as follows: 1 airplane 2.animal 3.arm 4.bag 5.banana
6.basket 7.beach 8.bear 9.bed 10.bench 11.bike 12.bird 13.board 14.boat 15.book 16.boot 17.bottle 18.bowl 19.box 20.boy
21.branch 22.building 23.bus 24.cabinet 23.cap 26.car 27.cat 28.chair 29.child 30.clock 31.coat 32.counter 33.cow 34.cup
35.curtain 36.desk 37.dog 38.door 39.drawer 40.ear 41 elephant 42.engine 43.eye 44.face 45.fence 46.finger 47.flag 48.flower
49.food 50.fork 51.fruit 52.giraffe 53.girl 54.glass 55.glove 56.guy 57.hair 58.hand 59.handle 60.hat 61.head 62.helmet
63.hill 64.horse 63.house 66.jacket 67.jean 68.kid 69 kite 70.lady 71.lamp 72.laptop 73.leaf 74.leg 75.letter 76.light 77.logo
78.man 79.men 80.motorcycle 81.mountain 82.mouth 83.neck 84.nose 85.number 86.orange 87.pant 88.paper 89.paw 90.people
91.person 92.phone 93.pillow 94.pizza 95.plane 96.plant 97.plate 98.player 99.pole 100.post 101.pot 102.racket 103.railing
104.rock 105.roof 106.room 107.screen 108.seat 109.sheep 110.shelf 111.shirt 112.shoe 113.short 114.sidewalk 115.sign
116.sink 117.skateboard 118.ski 119.skier 120.sneaker 121.snow 122.sock 123.stand 124.street 125 surfboard 126.table 127.tail
128.tie 129.tile 130.tire 131.toilet 132.towel 133.tower 134.track 135.train 136.tree 137.truck 138.trunk 139.umbrella
140.vase 141.vegetable 142.vehicle 143.wave 144.wheel 145.window 146.windshield 147.wing 148.wire 149.woman 150.zebra.
Given the lexeme, the task is to find semantically relevant lexeme from the predefined entity lexicon.
However, if there is no semantically relevant lexeme in the predefined entity lexicon, please answer 0.None

In-context Examples

Let’s take a few examples,
Question: Given the lexeme

water," find semantically relevant lexeme in the predefined entity lexicon. Answer: 0.None
Question: Given the lexeme "bus.” find semantically relevant lexeme in the predefined entity lexicon. Answer: 142.vehicle
Question: Given the lexeme "steel,” find semantically relevant lexeme in the predefined entity lexicon. Answer: 0.None
Question: Given the lexeme "vanity.” find semantically relevant lexeme in the predefined entity lexicon. Answe
Question: Given the lexeme "desktop,” find semantically relevant lexeme in the predefined entity lexicon. Answ
Question: Given the lexeme "c find semantically relevant lexeme in the predefined entity lexicon. Answer:
Question: Given the lexeme " d semantically relevant lexeme in the predefined entity lexicon. Answer: 99 pole
Question: Given the lexeme " find semantically relevant lexeme in the predefined entity lexicon. Answer: 6.basket
Question: Given the lexeme " antically relevant lexeme in the predefined entity lexicon. Answer: 0.None
Question: Given the lexeme " nd semantically relevant lexeme in the predefined entity lexicon. Answer: 98 player
Question: Given the lexeme " find semantically relevant lexeme in the predefined entity lexicon. Answer: 91 person
Question: Given the lexeme " semantically relevant lexeme in the predefined entity lexicon. Answer: 72.bird
Question: Given the lexeme "gras emantically relevant lexeme in the predefined entity lexicon. Answers 96.plant
Question: Given the lexeme "s ind semantically relevant lexeme in the predefined entity lexicon. Answer: /25.surfboard
111.hi

Question: Given the lexeme "striped shirts,” find semantically relevant lexeme in the predefined entity lexicon. Answer
Actual Question
Question: Given the lexeme Input, find ically relevant lexeme in the predefined entity lexicon. Answer:

Table 7. Prompt for alignment of entity class.

Task Description
The predefined predicate lexicon containing 50 lexemes is numbered as follows: 1.above 2.across 3.against 4.along 5.and 6.at
7.attached to 8.behind 9.belonging to 10.between 11.carrying 12.covered in 13.covering 14.cating 15.flying in 16.for 17.from
18 growing on 19.hanging from 20.has 21 holding 22.in 23.in front of 24.laying on 25.looking at 26.1;
28 mounted on 29.near 30.0f 31.0n 32.0n back of 33.over 34.painted on 35
40.sitting on 41.standing on 42.to 43.under 44.using 45.walking in 46.walking on 47.watching 48 wearing 49.wears 50.with.
Given the lexeme, the task is to find semantically relevant lexeme from the predefined predicate lexicon
However no semantically relevant lexeme in the predefined predicate lexicon, please answer 0.None.

In-context Examples

Let's take a few examples.

ext to," find semantically relevant lexeme in the predefined predicate lexicon. Answer: 29.near
are parked in,” find semantically relevant lexeme in the predefined predicate lexicon. Answer: 55[)MLL>¢I on
"waiting,” find semantically relevant lexeme in the predefined predicate lexicon. Answer: 0.Non
tting," find semantically relevant lexeme in the predefined predicate lexicon. Answer 404;;1;»,,» on
find semantically relevant lexeme in the predefined predicate lexicon. Answer: /4.eating

poining " find semantically relevant lexeme in the predefined predicate lexicon. Answer: 0.None

s on,” find semantically relevant lexeme in the predefined predicate lexicon. Answer: 24.lying on
umg underneath,” find semantically relevant lexeme in the predefined predicate lexicon. Answer: 43.under
placed next to," find semantically relevant lexeme in the predefined predicate lexicon. Answer: 29.near
"looking down at,” find semantically relevant lexeme in the predefined predicate lexicon. Answer: 25.looking at
"containing,” find semantically relevant lexeme in the predefined predicate lexicon. Answer: 0. has
g " find semantically relevant lexeme in the predefined predicate lexicon. Answer: 40.sitting on
antically relevant lexeme in the predefined predicate lexicon. Answer: 0.None
" find semantically relevant lexeme in the predefined predicate lexicon. Answer: 19.hanging from

ual Question

Question: Given the lexeme Input, find semantically relevant lexeme in the predefined predicate lexicon. Answer:

Question: Given the lexeme "

Table 8. Prompt for alignment of predicate class.

we begin by separating 1,594 entity classes into sub-groups,
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Figure 5. Framework for addressing large predefined lexicons
when aligning classes with those of interest.

noodle

each of which contains 200 or less than 200 entity classes.
It enables us to avoid the maximum prompt length restric-
tion, and list all the entities of sub-groups within the prompt.
Then, we can ask the LLM to align the query entity (e.g.,
Ramen) with entities in the sub-group, yielding semanti-
cally relevant entities within each sub-group (e.g., break-
fast, food truck, and noodle). Finally, we ask the LLM once
more to align a query entity with the intermediate output, al-
lowing for identifying the most semantically relevant entity
(e.g., noodle) within the large predefined lexicon. Through
this process, we can successfully align a query entity with
entity classes in a large predefined lexicon. Aligning predi-
cate classes in a larger predifined lexicon can be done simi-
larly.

A.3. Details of Grounding Methods

To ground unlocalized triplets, we employ two state-of-the-
art grounding methods, i.e., SGNLS [57] and vs3 [54].
Herein, we provide a detailed explanation of each ground-
ing method.

SGNLS. SGNLS employs a pre-trained Faster R-CNN [29]
object detector trained on Open Images [14] to ground un-
localized triplets. More precisely, it grounds the subject and
object within the unlocalized triplet with image regions that
share the same class with the subject/object. It is important
to note that the set of 601 entity classes in Open Images
does not completely cover the 150 entity classes in Visual
Genome [13]. In other words, there are entity classes in
Open Images that do not exist in Visual Genome. There-
fore, a knowledge base (i.e., WordNet [25]) is used to align
as many of Open Images’ entity classes as possible with
Visual Genome’s entity classes. The aligned entity classes
of Open Images are then used to compare with the subjects
and objects in the unlocalized triplet for grounding. The
predicate within the localized subject and object serves as a
pseudo label for training the SGG model.

vSs3. VS? employs a grounding-based object detector

(i.e., GLIP [18]) to ground unlocalized triplets. Specifically,
GLIP disentangles the task of object localization, which in-
volves identifying the object’s bounding box, and object
recognition, which entails recognizing the class associated
with that bounding box. Unlike the simultaneous object de-
tection and recognition through Region Proposal Network
(RPN) in Faster R-CNN, GLIP initially detects bounding
boxes. Then, given the text features corresponding to the
entity classes in the target data, it calculates the similar-
ity between these text features [7] and the visual features
[6] of bounding boxes. The grounding of the subject and
object within an unlocalized triplet is achieved by choos-
ing the bounding boxes with the highest similarity scores.
Once subject and object grounding is achieved, the predi-
cate serves as a pseudo-label for training the SGG model.

A.4. Details of Model Training

Here, we provide a detailed explanation for model
training after obtaining localized triplets, ie., G, =
{si, Pi, oi}fi“’l, where s;;, and o;; are obtained from
grounding methods. We follow the original training strat-
egy for each method, i.e., SGNLS [57] and VSs3 [54].
SGNLS. SGNLS uses a Transformer-based Uniter model
[4] on top of a pre-trained Faster R-CNN [29] object de-
tector to capture contextual information of neighboring ob-
jects. Each contextualized representation of the subject and
object is input into an entity classifier to generate entity log-
its. The entity classifier and Uniter model are then trained
using cross-entropy loss, with supervision provided by en-
tity labels (i.e., s; . and o; ), respectively. For the predi-
cate, its representation is obtained by feed-forwarding the
contextualized representations of the subject and object and
is fed into the predicate classifier. Then, the predicate clas-
sifier and Untier model are trained using cross-entropy loss
with supervision on predicate class p; ..

VS®.  VS? builds an additional predicate classifier on top
of a pre-trained GLIP [18] object detector for predicate pre-
diction. Specifically, the concatenation of visual features
and spatial information of s; and o; is fed into MLP to ob-
tain the predicate representation. Based on its representa-
tion, the predicate classifier generates the predicate’s logit.
The predicate classifier and a cross-modal fusion module
within GLIP are trained with supervision provided by predi-
cate class p; . using cross-entropy loss. When training enti-
ties (subject and object), the approach is similar to the class
recognition task in GLIP. Specifically, it maximizes the dot
product between the text features of entity classes (i.e., S; ¢
and o; ) and their visual features of bounding boxes using
binary focal loss [22].

B. Regarding the impact of grounding method
on LLM4SGG

In Table 2 of main paper, we observe that applying
LLM4SGG to VS?® [54] (i.e., VS®+LLM4SGG) results in



greater performance improvement compared to applying it
to SGNLS [57] (i.e., SGNLS+LLM4SGG). We provide a
detailed explanation regarding the impact of the grounding
method on LLM4SGG.

As mentioned in Section A.3, SGNLS includes the pro-
cess of aligning the 601 entity classes from the Faster R-
CNN [29] trained on Open Images [14] with the 150 entity
classes in Visual Genome [13]. We find that 34 out of 150
entity classes in Visual Genome are not aligned in the end.
In other words, the 601 entity classes in Open Images do
not cover these 34 entity classes. As a result, unlocalized
triplets containing these 34 entity classes are discarded and
not used for training since the image regions do not contain
the corresponding 34 classes, and they fail to be grounded.
In fact, 100K among the 344K unlocalized triplets obtained
through LLM4SGG are discarded, exacerbating the low-
density scene graph issue. On the other hand, VS?® fully
utilizes all 344K triplets. As mentioned in Section A.3, VS
computes the similarity between text features [7] of entities
(subject and object) in the unlocalized triplet and the visual
feature [6] of each image region. Then, the image region
with the highest score is grounded with that entity. This in-
dicates that the subject and object are always successfully
grounded with the image regions having the highest score.
Therefore, all 344K triplets are being grounded and used for
training, effectively alleviating the low-density scene graph
issue.

Taking a further step, in Section 3.4, we use LLM4SGG
to align the 601 entity classes in Open Images with 150 en-
tity classes in Visual Genome. However, we observe that
even if an LLM is used for alignment, 30 entity classes are
still not aligned because 30 entity classes have completely
different semantic meanings with the 601 entity classes in
Open Images. For example, phone and racket do not over-
lap with the semantic meaning with 601 entity classes in
Open Images. This suggests that the grounding method
(i.e., SGNLS) with Faster R-CNN trained on Open Images
somewhat limits the effectiveness of LLM4SGG.

C. Experiment Setup
C.1. Dataset

Visual Genome dataset [13] and GQA dataset [11] are
widely used in the SGG task. Visual Genome dataset is a
benchmark dataset used for evaulating the fully-supervised
approach [12, 19, 48, 51]. For test data, each image has 13.8
objects and 6.9 predicates on average.

Recently, GQA dataset has also been used for evaluat-
ing the fully-supervised approach [8, 10, 17, 34]. For test
data, each image contains 9.3 objects and 4.6 predicates on
average.

The predicate distributions of Visual Genome and GQA
are plotted in Figure 6.
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Figure 6. Predicate distribution for Visual Genome (Top) and
GQA (Bottom) in test data.

C.2. Evaluation Protocol

In the SGDet task, a predicted triplet is considered as cor-
rect if regions corresponding to the subject and object over-
lap with the ground-truth boxes with an IloU>0.5, while also
having the correct subject and object labels. In the pro-
cedure of incorporating the correct triplet into R@K and
mR @K performance, we initially compute the triplet score
by multiplying the subject score, predicate score, and ob-
ject score for all subject-object pair in an image, followed
by sorting them. If the correct triplet falls within the top-
K of the sorted triplets, it contributes to R@K and mR@K
performance.

C.3. Baselines

For comparison LLM4SGG with baselines, we incorporate
the fully-supervised approach [50] and weakly-supervised
approach [20, 47, 54, 57] [47].

e Motif [50] (Fully-supervised): Based on the analysis of
repeated patterns (i.e., motif), this method employs Bi-
LSTM to capture the motifs appearing across images.

e LSWS [47]: This method utilizes a Graph Neural Net-
work (GNN) applied to triplets extracted from captions
to capture the linguistic structure present among triplets,
with the aim of improving grounding unlocalized triplets.
Furthermore, this method extends its capability by itera-
tively estimating scores between image regions and text
entities.

e SGNLS [57]: To ground the unlocalized triplets over im-
age regions, it leverages information from a pre-trained
object detector (i.e., Faster R-CNN [29]). Specifically,
when the class of a text entity matches a class within
a bounding box, the text entity is grounded on that
bounding box. Once localized triplets are acquired, a
Transformer-based Uniter model [4] is trained based on
the contextualized representation of entities under the su-
pervision of localized triplets.

e [20]: In the process of grounding unlocalized triplets,
this method not only leverages a pre-trained object detec-
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Figure 7. Performance comparison per class when adopting the
reweighting method. The red-colored predicates denote the pred-
icates with a frequency of O in the conventional approach while
LLMA4SGG generates all of them with a frequency greater than 0.
(Bar: number of predicate instances, Line: Recall@ 100)

tor [29] for object-aware information but also leverages
a pre-trained visual-language model [15] to incorporate
interaction-aware information.

+ VS3 [54]: This method employs a pre-trained object de-
tector (i.e., GLIP [18]) to accomplish more than ground-
ing unlocalized triplets; it also aids in identifying novel
entities within these triplets. In contrast to earlier
WSSGG works that rely on a Faster R-CNN object detec-
tor for grounding, this method capitalizes on the ground-
ing ability of the GLIP that disentangles the tasks of class
recognition and localization, leading to a significant en-
hancement of grounding effectiveness.

C.4. Implementation Details

In the grounding process in SGNLS [57], we used Faster
R-CNN [29] as the object detector, which is pre-trained
on Open Images [14]. In the grounding process in VS,
we used GLIP [18] as the object detector with the Swin-L
backbone [23]. Regarding an LLM, we use gpt-3.5-turbo in
ChatGPT [27]. Note that to further alleviate the long-tailed
predicate distribution after Step 3 in our framework, we se-
lect the most fine-grained predicate when there are multiple
predicates between the same subject-object pair, where the
fine-grainedness is determined based on the predicate dis-
tribution within the entire set of unlocalized triplets. For
more insights regarding the impact of the predicate selec-
tion, please refer to Section D.3.

D. Experiment on VG

D.1. Performance Comparison per class with
Reweight method

In Figure 7, we show the performance per class of
LLM4SGG adopted to VS® (i.e., VS*+LLM4SGG) and
a baseline (i.e., VS®). We observe that the performance
of VS® + Rwt on 22 fine-grained predicates, which start
from the rightmost end of the x-axis wears to between,
drops to nearly zero, although we attempt to enhance the
performance of fine-grained predicates with the reweight-
ing method. This is due to the fact that the conventional
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Figure 8. (a) Performance comparison per class with fully-
supervised approach (i.e., Motif, [50]). (b) Predicate class dis-
tribution. The x-axis is sorted by the Visual Genome’s predicate
frequency in descending order.

approach generates unlocalized triplets with a limited num-
ber of predicates, and 12 of them even have a frequency
of 0. This scarcity of predicates makes it challenging to
improve the performance of fine-grained predicates even
with reweighting. In contrast, LLM4SGG addresses the
semantic over-simplification inherent in the extraction of
triplets from captions, which increases the number of fine-
grained predicate instances. As a result, when the reweight-
ing method is employed, it effectively boosts the perfor-
mance of fine-grained predicates. It is worth noting that for
some predicates whose frequency is O in the conventional
approach (i.e., attached to, lying on, made of, mounted
on), LLM4SGG shows performance improvements, verify-
ing the effectiveness of LLM4SGG.

D.2. Detailed Performance Comparison with fully-
supervised approach

In Table 2 of the main paper, we observe that
VS3+LLM4SGG (or VS?+Rwt+LLM4SGG) achieves
higher mR@K performance compared with Motif [50],
which is trained using the Visual Genome dataset in a fully-
supervised manner, while it shows a lower R@K perfor-
mance. To delve into this further, we present the perfor-
mance of each predicate class in Figure 8(a) and the pred-
icate class distribution in Figure 8(b). As shown in Fig-
ure 8(a), Motif exhibits a higher performance on coarse-
grained predicates (e.g., on, has, of) than on fine-grained
predicates (e.g., laying on, parked on). This is due to
the fact that its prediction is biased towards coarse-grained
predicates, suffering from the long-tailed predicate class
distribution of the dataset shown in Figure 8(b). As indi-
cated by the predicate class distribution of Visual Genome’s



<man, on, beach> « ( Selected ) <man, on, beach>
<man, walking on, beach> <man, walking on, beach> & ( Selected )
(@) ®)

Figure 9. Example of illustrating semantic ambiguity between (a)
and (b).

Row ‘ Selection ‘ R@50/100 mR@50/100 F@50/100
VS*+LLM4SGG
(a) | Random 8.15/9.55 5.10/6.19 6.27/7.51
(b) Coarse-grained | 9.79/11.37 2.52/3.03 4.01/4.78
(¢) | Fine-grained 8.91/10.43 7.11/8.18 7.91/9.17
vs?

(d) | Random 6.60/8.01 2.88/3.25 4.01/4.62
(e) Coarse-grained | 6.99/8.20 2.66/2.99 3.85/4.38
) Fine-grained 6.18/7.43 3.82/4.27 4.72/5.42

Table 9. Experiment for predicate selection

test set shown in Figure 6, focusing on coarse-grained pred-
icates improves the performance in terms of R@K. There-
fore, Motif shows high R@K performance while deteriorat-
ing the mR@K performance. On the other hand, as shown
in Figure 8(b), the predicate class distribution of triplets
generated by LLM4SGG is less severe compared with that
of the Visual Genome dataset. As a result, VS*+LLM4SGG
trained with the dataset generated by LLM4SGG shows
performance improvement on fine-grained predicates but
relatively inferior performance on coarse-grained predi-
cates. Therefore, VS3+LLM4SGG outperforms Motif
in terms of mMR@K while showing inferior performance
on R@K. Furthermore, applying the reweighting strategy
(VS2+Rwt+LLM4SGGQ) further enhances the performance
of fine-grained predicates, leading to an improvement in
mR @K. The performance improvement in terms of mR@K
compared to the fully-supervised approach, which indicates
the capability of constructing richer scene graphs, demon-
strates the effectiveness of LLM4SGG.

D.3. Experiment for Predicate Selection

Regarding the implementation details, to further alleviate
the long-tailed predicate distribution after Step 3 in our
framework, we select the most fine-grained predicate when
there are multiple predicates between the same subject-
object pair, where the fine-grainedness is determined based
on the predicate distribution within the entire set of unlo-
calized triplets. In Table 9, we further conduct experiments
under three different scenarios to understand the effect of
predicate selection: random predicate selection, coarse-
grained predicate selection, and fine-grained predicate se-
lection. We have the following observations: 1) LLM4SGG
with the random selection (row (a)) and the selection of
coarse-grained (row (b)) and fine-grained predicates (row

Method | ZR@50 zR@100
Motif (Fully-supervised) \ 0.31 0.60
vs?3 1.16 1.46
VS3+LLM4SGG 2.20 3.02

Table 10. Performance comparison for exploration of training
space.

(c)) consistently outperform the baseline with the selection
of each case (row (d).(e),(f)), respectively, which verifies
the effectiveness of LLM4SGG. 2) LLM4SGG with a se-
lection of coarse-grained predicates (row (b)) severely dete-
riorates the mR @K performance while increasing the R@K
performance compared to the random selection (row (a)).
While R@K performance is improved by increasing the in-
stances of coarse-grained predicates, the fine-grained pred-
icates in an image are not effectively utilized when com-
bined with coarse-grained predicates, resulting in a decrease
in the mR@K performance. In contrast, selecting the fine-
grained predicates (row (c)) significantly increases the per-
formance of mR@K. 3) LLM4SGG with a selection of the
fine-grained predicates (row (c)) yields higher R@K and
mR @K compared to random selection (row (a)). Regard-
ing the improvement of R@K performance, we attribute
it to the effect of alleviating the semantic ambiguity [51].
For example, Figure 9(a) and (b) illustrate the two cases
where unlocalized triplets parsed from several captions ex-
hibit predicates on and walking on between the same sub-
ject man and object beach. If we randomly select the pred-
icates, the model may learn on in one image and walking
on in another image even though they are associated with
the same subject and object, making the SGG model con-
fused due to the similar visual features with different predi-
cates. For this reason, selecting walking on for both images
helps mitigate semantic ambiguity, resulting in enhancing
the performance.

D.4. Experiment for Exploration of Training Space

In Table 10, we show the results of zero-shot Recall@K
(zZR@K), as introduced by [35], to explore the training
space of triplets extracted from captions. It is important
to note that the zZR@K metric used in the fully-supervised
approach evaluates how well the model predicts (subject,
predicate, object) triplet sets that have never been ob-
served in the training data of Visual Genome dataset [13].
Therefore, while triplets extracted from the captions in
COCO dataset may accidentally overlap with these zero-
shot triplets, we employ this metric to understand how
much our proposed approach broadens the training space.
When we compare VS?, which learns from triplets extracted
from captions through the conventional approach, to Mo-
tif, a fully-supervised approach trained on Visual Genome
dataset, we observe that VS? achieves a higher zZR@K, im-
plying that captions contain a broader range of diverse com-
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Method ‘ R@50/100 mR@50/100 F@50/100
VSL3 6.60/8.01 2.88/3.25 4.01/4.62
VS*+LLM4SGG .opmp | 8.66710.20 6.28 /7.06 7.28/8.34
VS*+LLM4SGG 8.91/10.43 7.11/8.18 7.91/9.17

Table 11. Experiment for new prompt.

positional relationships compared to the Visual Genome
dataset. On the other hand, VS® with LLM4SGG (.e.,
VS3+LLM4SGG) significantly improves the zZR @K perfor-
mance compared to VS®. This suggests that triplets gen-
erated through LLM4SGG are proficient at capturing the
compositional relationships found in captions, thereby ex-
panding the training space of triplets. This expansion is
achieved by addressing the semantic over-simplification is-
sue, leading to the creation of a more varied set of predi-
cates, and the low-density scene graph, resulting in a wider
range of compositional triplets. We argue that the use of the
zR @K metric demonstrates the effectiveness of LLM4SGG
in terms of expanding the training space.

D.5. Experiment for New Prompt Design

In Table 11, we conduct an experiment with a new prompt
design. In fact, the prompt for extracting triplets from cap-
tions in Section 3.3 and the alignment of entity/predicate
classes with target data in Section 3.4 can be combined into
one. More precisely, we instruct the LLM to follow the
four steps for triplet extraction from paraphrased caption:
Step 1) Paraphrase the caption, Step 2) Extract meaning-
ful triplets from the paraphrased caption obtained in Step 1,
Step 3) Find semantically relevant lexeme in the predefined
entity lexicon for the subject and object from the triplets
obtained in Step 2, where the entity lexicon is enumerated
in Table 7. Step 4) Find semantically relevant lexeme in
the predefined predicate lexicon for the predicate from the
triplets obtained in Step 3, where the predicate lexicon is
enumerated in Table 8. Following the four steps, we include
stepwise results in the in-context examples for in-context
few-shot learning, and insert the caption from which we
want to extract triplets in the actual question. As shown
in Table 11, LLM4SGG with the combined prompt (i.e.,

VS3+LLM4SGG .0imp) outperforms the baseline, implying
that even though prompt design can be diverse, it consis-
tently verifies the efficacy of the LLM-based triplet for-
mation process. On the other hand, VS*+LLM4SGG .oms
shows inferior performance compared to VS*+LLM4SGG.
This is due to a practical reason incurred by the length
limit in the prompt of GPT-3.5, which allows only up to
4096 tokens. Specifically, VS?+LLM4SGG o, integrates
the instructions of all four steps in the task description,
including the definition of entity/predicate lexicons, and
in-context examples following four steps within a single
prompt, which leads to a longer length while the max-
imum length is constrained. For this reason, we could
only accommodate four in-context examples. In contrast,
VS®+LLM4SGG divides the four steps into two chains
(Section 3.3 and Section 3.4), allowing more in-context ex-
amples in each chain. Specifically, VS®*+LLM4SGG con-
tains six in-context examples in Chain-1 (i.e., triplet ex-
traction) and fourteen in-context examples in Chain-2 (i.e.,
alignment of entity/predicate classes). The increased num-
ber of in-context examples equips an LLM to adapt more
effectively to the provided few-shot task [41], ultimately en-
hancing its adaptability for the task of triplet extraction task
and alignment of entity/predicate classes. In summary, un-
der the practical length limit of GPT-3.5, we observe that
an approach that divides the original four steps into two
chains is more effective in extracting triplets aligned with
entity/predicate of interest than an approach that combines
them into a single prompt.

D.6. Case Studies on Extracting Fine-grained Pred-
icates

In Figure 10, we present case studies on predicates in which
the conventional approach (i.e., Parser+KB) eventually ends
up in a frequency of 0, while LLM4SGG does not. In Fig-
ure 10(a), despite the presence of the fine-grained predicate
on back of in the caption, the conventional approach fails to
extract it since the conventional approach relies on a heuris-
tic rule-based parser [43] that lacks the capability of un-
derstanding the context of caption and extracting the pred-
icate on back of at once. On the other hand, LLM4SGG
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Figure 11. Qualitative results on Visual Genome dataset. (a) A predicate parked on rarely appears in the conventional approach. (b), (c)
Predicates mounted on and lying on never appear in the conventional approach.

successfully extracts the predicate on back of through a
comprehensive understanding of the caption’s context. In
Figure 10(b), we observe that the conventional approach,
which suffers from semantic over-simplification, extracts
the coarse-grained predicate to instead of connected to,
whereas LLM4SGG extracts the fined-grained predicate
connected to within the caption. Subsequently, by align-
ing connected to with semantically relevant lexeme, at-
tached to, in the target data through LLM’s semantic rea-
soning ability, it eventually generates a fine-grained pred-
icate attached to. This demonstrates the effectiveness
of LLM-based triplet extraction in addition to LL.M-based
alignment, leading to capturing the fine-grained predicates.
Interestingly, in Figure 10(c), we observe that the para-
phrasing step (Section 3.3) in LLM4SGG aids in extracting
fine-grained predicates. Specifically, paraphrasing the cap-
tion conveys a more specific meaning, i.e., from someone’s
glass to glass that belongs to someone, thus enabling the ex-
traction of the fine-grained predicate belonging to, which
the conventional approach cannot achieve. Through these
case studies, we demonstrate the effectiveness of extracting
the fine-grained predicates in LLM4SGG.

D.7. Qualitative Results

To further verify the effectiveness of LLM4SGG on Vi-
sual Genome dataset [13], in Figure 11 , we showcase
qualitative results from the test data, comparing the base-
line (ie., VS® [54]) with LLM4SGG applied to VS?
(i.e., VS?+LLM4SGG) . In Figure 11(a), we observe that
LLM4SGG accurately predicts a fine-grained predicate
parked on between subject bus and object street, which
rarely appears in the training data using the conventional
approach. In contrast, the baseline (i.e., VS®) following
the conventional approach predicts a coarse-grained pred-
icate on due to the semantic over-simplification, incurring
the long-tailed predicate distribution. Furthermore, in Fig-
ure 11(b), we observe that LLM4SGG makes a correct pre-
diction on the predicate whose frequency is O in the conven-
tional approach (i.e., mounted on). On the other hand, the
baseline predicts a coarse-grained predicate on and never
predicts mounted on since it has not been observed during
training. Interestingly, while in Figure 11(c) LLM4SGG
made an incorrect prediction by predicting lying on instead

of on, we argue that lying on is a more realistic answer that
provides a richer context. However, as lying on is never ob-
served while training the baseline (i.e., VS®), it can never
be predicted. Through the qualitative analysis, we again
demonstrate the effectiveness of alleviating the long-tailed
problem in WSSGG.

E. Experiment on GQA
E.1. Training and Evaluation

Training. To train a SGG model for evaluation on the GQA
dataset [11], LLM4SGG requires three modifications, en-
compassing the change of 1) predefined entity, 2) predicate
lexicon, and 3) in-context examples in Section 3.4, while
maintaining the triplet extraction process in Section 3.3.
More precisely, in the predefined entity and predicate lexi-
cons, we replace the entity and predicate classes originally
associated with Visual Genome dataset [13] with entity and
predicate classes in the GQA dataset, respectively. For in-
context examples, we substitute the examples that are ini-
tially relevant to Visaul Genome dataset with examples re-
lated to GQA dataset. After obtaining unlocalized triplets
composed of entity/predicate classes in the GQA dataset,
the process of grounding them remains unchanged from the
grounding method used in Visual Genome dataset. Please
refer to the details of the grounding process in Section A.3.
Evaluation.  To evaluate a trained model on the GQA
dataset, only a single modification is needed in the archi-
tecture of VS® [54]. Specifically, we change the output en-
tity class of bounding boxes from the entity classes of the
Visual Genome dataset to those of the GQA dataset. For
details of VS?® regarding the determination of entity classes
for bounding boxes, the target data’s entity classes are listed
in text format, e.g., airplane. animal. arm. ... . Then, a text
encoder [7] encodes the enumerated text list to obtain the
text features for each entity. The similarity between these
text features of entity classes and visual features [6] of the
bounding boxes is computed. In perspective of the bound-
ing box, the text entity with the highest similarity is chosen
as the class assigned to the bounding box. In the procedure
of determining the entity classes for bounding boxes, we
simply list the entity classes from the GQA dataset instead
of Visual Genome’s entity classes. This ensures that entity
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classes assigned to the bounding boxes align with the en-
tity classes in the GQA dataset. Subsequently, we proceed
with a standard evaluation protocol used in Visual Genome
dataset.

E.2. Performance Comparison per class

In Figure 12(a), we show a performance comparison per
class on the GQA dataset [11]. For baseline (i.e., VS® [54]),
we observe that the performance for most predicates, except
for coarse-grained predicates, is nearly zero. It is attributed
to the semantic over-simplification inherent in the conven-
tional approach, leading to a long-tailed predicate class dis-
tribution as shown in Figure 12(b). The long-tailed prob-
lem is severely exacerbated in the GQA dataset [11] due to
its inclusion of more complicated predicates (e.g., stand-
ing next to), as well as a greater variety of fine-grained
predicates, such as talking on and driving down, which are
challenging to extract from captions using heuristic rule-
based parser [43]. In fact, 44 out of 100 predicates have
a frequency of 0, meaning that they are never predicted.
On the other hand, as shown in Figure 12(b), LLM4SGG
effectively addresses the long-tailed problem by alleviat-
ing the semantic over-simplification and low-density scene
graph issues, increasing the instances that belong to the
fine-grained predicates instances so that there are no pred-
icates with a frequency of 0. As a result, LLM4SGG sig-
nificantly enhances the performance of fine-grained predi-
cates, thereby improving the performance of mR@XK. This

demonstrates the effectiveness of LLM4SGG with the more
challenging GQA dataset.

E.3. Qualitative Results

To further demonstrate the effectiveness of LLM4SGG on a
more challenging dataset, GQA [11], we present qualitative
results comparing the baseline (i.e., VS®) with LLM4SGG
applied to VS® (i.e., VS>+LLM4SGQ) in Figure 13. For
Figure 13(a), (b), and (c), we showcase examples from the
test data, where predicates have a frequency of O in the
training data when triplets are generated using the conven-
tional approach, i.e., grazing in, skiing on, and standing in
front of. In Figure 13(a) and (b), we observe that the base-
line predicts the coarse-grained predicate in, which is the
second most frequent predicate, as shown in Figure 12(b).
The prediction of coarse-grained predicate is attributed to
the semantic over-simplification issue of the conventional
approach, leading to a long-tailed problem. On the other
hand, LLM4SGG correctly predicts the fine-grained predi-
cates grazing in and skiing on by effectively alleviating the
semantic over-simplification issue. In Figure 13(c), we en-
counter a complicated predicate, standing in front of, be-
tween the subject woman and object door. Such predicates
are intricate to extract from captions unless they are com-
prehensively understood and extracted at once. LLM4SGG,
however, adeptly extracts the fine-grained predicate stand-
ing in front of by understanding the entire context of the
caption via LLM. LLM4SGG makes it possible to learn the
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Figure 13. Qualitative results on GQA dataset. (a), (b), (c): pred-
icates grazing in, skiing on, and standing in front of never appear
while training the baseline VS®.

predicate standing in front of, resulting in a correct pre-
diction. These qualitative results on the more challenging
GQA dataset further verify the effectiveness of LLM4SGG.

F. Replacing LLLM with Smaller Language
Models

Note that a potential limitation of LLM4SGG is that it re-
lies on a proprietary black box LLM, i.e., GPT-3.5 (135B),
to extract triplets from captions and align the triplets with
entity/predicate classes of interest, which is costly to use.
This raises a question: can we replace the black box LLM
with an open-source LLM of a smaller size? To explore this
question, we employ LLaMA2-7B [38] as a smaller lan-
guage model and use it to perform Chain-1 (Section 3.3)
and Chain-2 (Section 3.4) with the same prompts shown in
Section A.1.

F.1. Quantitative Results

In Table 12, we conduct an experiment on Visual Genome
dataset for inference to quantitatively measure how well
LLM4SGG works with a smaller language model (i.e.,
LLaMAZ2-7B). We observe that LLM4SGG using LLaMA?2
(i.e., LLM4SGG-LLaMA 2) outperforms the baseline
(i.e., VS®), especially in terms of mR@K. This implies
that LLM4SGG-LLaMA?2 effectively alleviates the se-
mantic over-simplification issue. Regarding the mitiga-

Method | #Triplet | R@50/100 | mR@50/100 F@50 /100

vs? 154K 6.60/8.01 2.88/3.25 4.01/4.62
+LLM4SGG-LLaMA2 (7B) 228K 8.26/9.91 5.90/6.72 6.88/8.01
+LLM4SGG-GPT-3.5 (175B) 344K 8.91/10.43 7.11/8.18 7.91/9.17

Table 12. Performance comparison with the utilization of smaller
language model.

tion of the low-density scene graph issue, we observe
that LLM4SGG-LLaMA?2 increases the number of triplets
from 154K to 228K, leading to performance improve-
ments in terms of both R@K and mR@K. In summary,
LLM4SGG is still superior to the baseline when replac-
ing the LLM with a smaller language model. On the other
hand, we observe that LLM4SGG-LLaMA2 underperforms
LLM4SGG-GPT-3.5. We attribute this to the fact that com-
pared to LLM4SGG-GPT-3.5, LLM4SGG-LLaMA?2 dis-
cards more triplets when aligning classes in triplets (i.e.,
Chain-2). In fact, LLM4SGG with LLaMA?2 discards
81.9% of the triplets obtained after Step 2 (1.25M*—288K)
during the process of aligning classes in triplets (Chain-2),
whereas LLM4SGG-GPT-3.5 only discards 72.6% of the
triplets obtained after Step 2 (1.25M—344K). This discrep-
ancy is mainly due to the disparity in semantic reasoning
ability between LLaMA?2 and GPT-3.5, attributed to the sig-
nificance difference in the model size (i.e., 7B vs. 175B).

Nevertheless, based on the result of LLM4SGG-
LLaMAZ2, we argue that GPT-3.5 in LLM4SGG can be re-
placed with a smaller language model. Moreover, we expect
that using a even larger language model, i.e., LLaMA2-70B
[38], would further enhance the performance.

F.2. Qualitative Results

In Figure 14, we show qualitative results related to triplets
extracted from captions, where we replace GPT-3.5 with
a smaller language model (i.e., LLaMA2-7B). In Fig-
ure 14(a), we observe that the utilization of LLaMA?2
alleviates the semantic over-simplification. Specifically,
LLM4SGG-LLaMA?2 extracts fine-grained predicates lay-
ing on and standing on within captions while the conven-
tional approach fails to extract it or extract coarse-grained
predicate on. In Figure 14(b), we observe that even if
LLaMAZ2 is capable of extracting fine-grained predicates
(i.e., walking down, sitting around), it fails to align them
with predicate classes of interest, resulting in discarding
triplets. On the other hand, GPT-3.5 successfully aligns
them with relevant predicates of interest, such as walk-
ing on and sitting on. The failure of LLaMA’s align-
ment stems from its limited semantic reasoning ability com-
pared to GPT-3.5. As a result, LLM4SGG-LLaMA?2 yields
a smaller number of triplets compared with LLM4SGG-
GPT-3.5 (228K vs. 344K) so that it shows inferior per-
formance compared to LLM4SGG-GPT-3.5. Moreover, in
Figure 14(c), we observe that LLaMA?2 occasionally aligns

4 After Chain-1, 1.25M triplets are extracted.
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Figure 14. Qualitative Results for utilization of a smaller language model (i.e., LLaMA2-7B). Red arrow: Failure of alignment, Blue arrow:

Success of alignment, Orange arrow: Incorrect alignment.
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classes with irrelevant classes of interest. More precisely,
LLaMAZ2 aligns moving along and books with in front
of and board, respectively. In contrast, GPT-3.5 aligns
them with somewhat semantically relevant classes, such as
along and book, respectively. For LLM4SGG-LLaMA?2,
this alignment with semantically irrelevant classes would
also incur performance deterioration, as shown in Table 12.
However, as discussed in Section F.1, we expect that these
issues could be solved by replacing it with a larger model,
i.e., LLaMA2-70B.

G. Evaluating the Quality of Triplets Gener-
ated by LLM4SGG

In Figure 15, we quantitatively evaluate the quality of
triplets generated by LLM4SGG. To this end, we com-
bine triplets made by the conventional approach (i.e.,
Parser+KB) and triplets generated by LLM4SGG with dif-
ferent ratios. Specifically, we gradually increase the ratio of
triplets generated by LLM4SGG while decreasing the ratio
of triplets made by the conventional approach. For example,
in an 8:2 ratio, we randomly select 80% of the total triplets
made by the conventional approach and 20% of the total
triplets generated by LLM4SGG. As shown in Figure 15,
as we increase the ratio of LLM4SGG’s triplets, we observe
a gradual improvement in mR@K and F@K performance.

Steps | Num. Output/Input tokens per image  Cost per image

(Step 2-1) Triplet Extraction of Original Caption 0.16K / 0.52K $0.00050
(Step 2-2) Triplet Extraction of Paraphrased Caption 0.48K / 0.89K $0.00117
(Step 3) Alignment of object cla: 0.11K/ 1.18K $0.00076
(Step 3) Alignment of predicate classes 0.11K/0.82K $0.00058

Table 13. Num. tokens and cost per image containing 5 captions.

This implies that LLM4SGG’s triplets contain a higher
number of fine-grained predicates and exhibit superior qual-
ity. Furthermore, beyond a 0.4 ratio of LLM4SGG (i.e.,
6:4 ratio), the R@K performance remains relatively consis-
tent. It is worthwhile to note that considering that triplets
made by the conventional approach predominantly con-
sist of coarse-grained predicates, reducing their proportion
would generally result in a drop in R@K performance due
to the reduction in the number of coarse-grained predicates.
Nevertheless, the fact that R@K performance remains con-
sistent after 0.4 ratio indicates that LLM4SGG’s triplets
contain high-quality coarse-grained predicates to some ex-
tent, surpassing the quality of coarse-grained triplets made
by the conventional approach. Through the above results,
we demonstrate the effectiveness of LLM4SGG in generat-
ing high-quality triplets.

H. Cost for Utilization of a Large Language
Model

The cost of using ChatGPT for augmenting the data is sum-
marized in Table 13. Considering that the input tokens and
output tokens cost $0.0005 and $0.0015 per 1K tokens, the
cost per image for Step 2-1 is computed by (520/1K) x
0.0005 + (160/1K) x 0.0015, which is similarly computed
in other steps.



