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Here we provide additional details and experimental re-
sults not included in our main paper due to the lack of space.

A. Full Derivation
A.1. Structural Self-Attention

In Sec.3.2 of our main paper, we explain StructSA with a
slightly simpler version that uses dot-product correlation.
Here we provide the full version of StructSA used in our
experiments, which captures fine-grained correlation struc-
tures by employing channel-wise correlation.

Channel-wise Correlation. Since the dot product cor-
relation qiK

T reduces all the channels of the query and
the keys, it might lose rich semantic information. We in-
stead use the Hadamard product [5, 6, 12] to leverage richer
channel-wise correlation structures for generating the final
attention weights. SQKA extracts structural patterns from
the channel-wise correlation applying convolution as

Ai = σ
(
conv

(
diag(qi)K,HK

))
∈ RN×D, (11)

HK = [HK
1 , · · · ,HK

D ] ∈ RD×M×C , (12)

where diag(·) is a function that outputs a square diagonal
matrix from an input vector and HK represents D convolu-
tional filters of which kernel size and input channel are M
and C, respectively. Each score of Ai is computed as

ai,j = σj

(
vec (diag (qi)Kj) f(HK)

T
)
, (13)

f(HK) = [vec(HK
1 ), · · · , vec(HK

D)] ∈ RD×MC , (14)

where vec(·) is a vectorization function. Compared to UK

where each column takes a single correlation map to detect
a structural pattern, each of f(HK), i.e., vec(HK

d ), extracts
a pattern from the whole C correlation maps using fine-
grained channel-wise correlation. One potential drawback
of the channel-wise correlation map, diag(qi)K, would be
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to increase the memory complexity C-times larger com-
pared to that of dot-product correlation map, i.e., O(N2C)
vs. O(N2). To address the issue, we permute the computa-
tion orders of Eq. 13 as

ai,j = σj

(
C∑

c=1

M∑
m=1

(qi)c(Kj)m,c(HK):,m,c

)

= σj

(
C∑

c=1

(qi)c

M∑
m=1

(Kj)m,c(HK):,m,c

)
= σj

(
qi(Kj ∗ HK)

)
. (15)

where we first compute Kj ∗ HK, which requires memory
complexity of O(NCD), and then multiply it with qi. This
enables us to compute ai,j in a memory-efficient way when
N > D without explicit computation of channel-wise cor-
relation maps.

Channel-wise Context Value Aggregation. We also ex-
tend the context aggregators UV, which are shared by dif-
ferent channels, to be channel-wise aggregators, so that they
can learn aggregation weights more adaptive to each chan-
nel of the values. Each channel of StructSA output is com-
puted as

(yi)c =

N∑
j=1

σj

(
vec (diag(qi)Kj) f(HK)

T
)
(HV):,:,c(Vj):,c,

(16)

HV = [HV
1 , · · · ,HV

D] ∈ RD×M×C , (17)

Compared to UV that produces a single kernel shared by ev-
ery channel, (HV):,:,c generates C different spatial kernels
aggregating the context with diverse patterns. We conduct
experiments to investigate the effect of utilizing channel-
wise correlation and context aggregation in Sec. B. We use
this version of StructSA as a basic operation in our main
paper.
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A.2. Convolutional Self-Attention

For the sake of simplicity in derivation, ConvSA (Eqs.8-10)
in Sec.3.3 is described as sharing channel-wise convolution
weights across channels for key and value projection, which
is not exactly the same as those used in previous ConvSA-
based methods [2, 9, 15]. We here provide a full derivation
of ConvSA with conventional channel-wise convolution, of
which weights are not shared across channels. Given the
channel-wise convolution weights HK,HV ∈ RM×C , c-
th channel of each key kconvi and value vconvi is computed
as

(kconv
i )c = (HKT

)c(Ki):,c ∈ R, (18)

(vconv
i )c = (HVT

)c(Vi):,c ∈ R, (19)

where (Ki):,c, (Vi):,c ∈ RM×1 indicate features in the c-th
channel of (Ki) and (Vi), respectively. Plugging Eqs. 18
and 19 into Eq.10, each channel of ConvSA output is com-
puted as

(yi)c =

N∑
j=1

σj

(
qik

conv
j

T
)
(vconv

j )c

=

N∑
j=1

σj

(
C∑

c=1

(qi)c

(
(HKT

)c(Kj):,c

))
(vconv

j )c

=

N∑
j=1

σj

(
C∑

c=1

M∑
m=1

(qi)c(Kj)m,c(H
K)m,c

)
(vconv

j )c

=

N∑
j=1

σj

(
vec (diag(qi)Kj) vec

(
HK

))
(HVT

)c(Vj):,c.

(20)

This reveals that the channel-wise convolution weights HK

for the key projection, in fact, act as a pattern detector that
extracts a single structural pattern from the channel-wise
correlation, while those of HV perform as a channel-wise
context aggregator that generates a spatial kernel weights
for every channel. Despite the capability of capturing a
channel-wise correlation structure, it still learns a single
pattern only from the rich channel-wise correlation, thus be-
ing limited in leveraging diverse structural patterns for the
attention weight generation compared to StructSA.

B. Additional Ablation Experiments
Here we provide additional ablation experiments to validate
design components in StructSA. We follow the same train-
ing and testing protocols in Sec.4.3 of our main paper.

Channel-wise Correlation and Aggregation. Table 6a
summarizes the effectiveness of the channel-wise correla-
tion and aggregation. Compared to the dot-product correla-

channel-wise ImageNet-1K Something V1
correlation aggregation top-1 top-5 top-1 top-5

80.7 95.1 48.7 77.2
✓ 81.0 95.3 49.9 77.7
✓ ✓ 81.1 95.4 50.4 78.2

(a) Channel-wise correlation and aggregation.

M ImageNet-1K Something V1
UK UV top-1 top-5 top-1 top-5

- - 80.5 95.0 48.3 76.6
3× 3 (×3) 3× 3 (×3) 81.1 95.4 50.4 78.2
1× 1 (×1) 3× 3 (×3) 80.8 95.1 48.7 77.1
5× 5 (×5) 3× 3 (×3) 81.0 95.3 50.6 78.1
7× 7 (×7) 3× 3 (×3) 80.9 95.1 50.3 78.1
3× 3 (×3) 1× 1 (×1) 80.9 95.2 49.6 77.5
3× 3 (×3) 5× 5 (×5) 81.2 95.6 50.3 78.2
3× 3 (×3) 7× 7 (×7) 81.0 95.4 50.3 77.8
1× 1 (×1) 1× 1 (×1) 80.6 95.0 48.5 76.9
5× 5 (×5) 5× 5 (×5) 81.1 95.4 50.5 78.2
7× 7 (×7) 7× 7 (×7) 81.0 95.2 50.5 78.1

(b) Kernel size M .
Table 6. Ablation studies on ImageNet-1K and Something-
Something V1. Top-1 and top-5 accuracies (%) are shown. In
Table 6a, we set D = 4, M = 3 × 3 × 3. In Table 6b, we set
D = 4 as default. Bold-faced and underlined numbers indicate
the first and second highest scores, respectively.

method (DeiT-S) IN-1K SS-V1
param FLOPs top-1 top-5 param FLOPs top-1 top-5

ConvSA 22.1M 4.6G 80.8 95.2 22.8M 57.3G 49.7 77.6
ConvSA + channel↑ 27.9M 5.8G 80.9 95.2 34.3M 80.4G 49.9 77.9
ConvSA + layer↑ 29.3M 6.1G 81.0 95.4 31.8M 80.8G 50.1 77.8
StructSA 22.4M 5.7G 81.1 95.4 23.1M 80.4G 50.4 78.2

Table 7. Comparison to ConvSA variants with similar FLOPs.

tion, the channel-wise correlation improves the top-1 accu-
racy by 0.3%p and 1.2%p on ImageNet-1K and Something-
Something V1 datasets, respectively, validating that fine-
grained structures from the channel-wise correlation are
beneficial to the attention weight generation. As we use
channel-wise context aggregator, we obtain additional im-
provements by 0.1%p and 0.5%p on both datasets.

Different Combinations of UK and UV. In Table 6b, we
investigate different combinations of UK and UV varying
the size of the kernel size M . As discussed in Sec.4.3, using
the large kernel size M on both UK and UV improves the
performance, demonstrating the effectiveness of SQKA and
contextual aggregation. The performance saturates as M
gets larger than 5× 5× 5. We set the kernel size M of UK

and UV to 3 × 3 × 3 as default considering computation-
accuracy trade-off.

Comparison to ConvSA. Table 7 compares our StructSA
to its ConvSA counterpart with a matching capacity, i.e.,
a similar number of parameters; we match their capac-
ities by varying the number of channels or layers of
the ConvSA backbone (DeiT-S). Our method achieves



better accuracy-compute trade-off on ImageNet-1K and
Something-Something V1 datasets. For example, StructSA
outperforms the ConvSA variants with more parameters and
compute on Something-Something V1 where learning mo-
tion dynamics may be more important for classification.

C. Results on Dense Prediction Tasks
We evaluate the generalizability of StructViT on various
dense prediction tasks: object detection and instance seg-
mentation on COCO 2017 [10] as well as semantic segmen-
tation on ADE20K [18]. For object detection and instance
segmentation, we use the Mask R-CNN [4] with Hourglass
UniFormer-{S, B}h14 [8] as the backbone and then replace
all SA blocks with our StructSA blocks. We train the mod-
els for 12 epochs following the 1× schedule in [8]. Sim-
ilarly, for semantic segmentation, we integrate StructSA
blocks into Semantic FPN [7] with Hourglass UniFormer-
{S,B}h32 backbone and train the models for 80K iterations
following the protocols in [13].

Tables 8 and 9 show consistent performance improve-
ments across all benchmarks, affirming the effectiveness of
StructSA. Specifically, in Table 8, StructViT-S-4-1h14 out-
performs the baseline UniFormer-Sh14 on both detection
and segmentation tasks by 1.0 box mAP and 0.8 mask mAP,
respectively. Furthermore, semantic segmentation results in
Table 9 also shows the significant increase of mIOU over
the baseline by 0.7 %p and 0.8 %p at both small and base
scales, respectively. These consistent improvements effec-
tively demonstrate the generalizability of StructSA across
various backbone scales and downstream tasks.

D. Attention Map Visualization
We visualize attention maps of SA, ConvSA, and StructSA
to provide an in-depth comparison across the methods. Dif-
ferent from SA, which uses individual query-key correlation
as an attention weight for a single value feature (Fig. 4b),
ConvSA and StructSA aggregate a local chunk of value
features by generating dynamic kernels for each location.
ConvSA generates the dynamic kernels κconv

i,j , where spatial
patterns are identical for all locations except for their scales
(Fig. 4c). In contrast, StructSA constructs the dynamic
kernels κstruct

i,j in diverse aggregation patterns (Fig. 4e) by
combining D correlation pattern scores and context aggre-
gation patterns as explained in Sec.3.2. This property of
StructSA enables the model to effectively leverage geomet-
ric structures for visual representation learning. To better
observe the effect, we visualize the final attention maps of
StructSA in Fig. 4f by spatially merging the overlapped ker-
nels κstruct

i,j following the equation:

cstructi,j =

M∑
m=0

(κstruct
i,j−⌊M/2⌋+m)m. (21)

method #param Mask R-CNN 1×
(M) APb APb

50 APb
75 APm APm

50 APm
75

R50 [3] 44 38.0 58.6 41.4 34.4 55.1 36.7
PVT-M [13] 44 40.4 62.9 43.8 37.8 60.1 40.3
Focal-T [17] 49 44.8 67.7 49.2 41.0 64.7 44.2
PVTv2-B2 [14] 45 45.3 67.1 49.6 41.2 64.2 44.4
UniFormer-Sh14 [8] 41 45.6 68.1 49.7 41.6 64.8 45.0
StructViT-S-4-1h14 42 46.6 69.2 51.5 42.8 65.5 46.1
R101 [3] 63 40.4 61.1 44.2 36.4 57.7 38.8
X101-32 [16] 63 41.9 62.5 45.9 37.5 59.4 40.2
PVT-M [13] 64 42.0 64.4 45.6 39.0 61.6 42.1
PVT-L [13] 81 42.9 65.0 46.6 39.5 61.9 42.5
Twins-B [1] 76 45.2 67.6 49.3 41.5 64.5 44.8
Swin-S [11] 69 44.8 66.6 48.9 40.9 63.8 44.2
Swin-B [11] 107 46.9 - - 42.3 - -
Focal-S [17] 71 47.4 69.8 51.9 42.8 66.6 46.1
Focal-B [17] 110 47.8 - - 43.2 - -
PVTv2-B5 [14] 101 47.4 68.6 51.9 42.5 65.7 6.0
UniFormer-Bh14 [8] 69 47.4 69.7 52.1 43.1 66.0 46.5
StructViT-B-4-1h14 70 48.2 70.8 53.0 43.7 66.7 46.9

Table 8. Results of object detection, instance segmentation on
COCO val2017. APb and APm indicates box mAP and mask mAP,
respectively. We measure FLOPs at 800× 1280 resolution.

method Semantic FPN 80K
#param (M) FLOPs (G) mIoU (%)

Res101 [3] 48 260 38.8
PVT-M [13] 48 219 41.6
PVT-L [13] 65 283 42.1
Swin-S [11] 53 274 45.2
Twins-B [1] 60 261 45.3
TwinsP-L [1] 65 283 46.4
UniFormer-Sh32 [8] 25 199 46.2
UniFormer-S [8] 25 247 46.6
StructViT-S-4-1h32 26 271 46.9
X101-32x4d [16] 86 - 40.2
Swin-B [11] 91 422 46.0
Twins-L [1] 104 404 46.7
UniFormer-Bh32 [8] 54 350 47.7
UniFormer-B [8] 54 471 48.0
StructViT-B-4-1h32 54 529 48.5

Table 9. Results of semantic segmentation on ADE20K. We
measure FLOPs using 512× 2048 resolution images.

cstructi,j indicates the final attention score multiplied to the
value vj to generate the output. The examples in Fig. 4f
show that StructSA contextualizes the entire features in
a structure-aware manner considering objects’ layouts or
shapes; for instance, StructSA aggregates global contexts
distinguishing different parts of an orange (Fig. 4f, 2nd row)
or an ostrich (Fig. 4f, 3rd row). The qualitative analysis
demonstrates that StructSA outperforms ConvSA in lever-
aging correlation structures for visual representation learn-
ing. This suggests that StructSA may be particularly useful
for computer vision tasks that require an understanding of
relational structures and layouts of visual elements.



Figure 4. Attention map visualization of SA, ConvSA, and StructSA on ImageNet-1K. The query location i is set to the center of the
image and the kernel size M = 3× 3. Given (a) input images, we illustrate (b) attention maps of SA, (c) dynamic kernels κconv

i,j , (d) final
attention maps of ConvSA, i.e., aggregated weights of κconv

i,j , (e) dynamic kernels κstruct
i,j , and (f) final attention maps of StructSA, i.e.,

aggregated weights of κstruct
i,j , respectively. Note that in (c) and (e), each location j has an aggregation map of the kernel size M = 3× 3

and thus we show enlarged images for three different sampled locations j.
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