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A. Experiment Setup
A.1. Datasets

Synthetic noise: instance-dependent label noise. We
detail the process of generating instance-dependent label
noise [16], which is the synthetic type label noise utilized
in our experiments. The key idea is that the probability of
an instance being incorrectly labeled to other classes is cal-
culated based on both the input feature and its label, using
randomly generated feature projection matrices with respect
to each class. The procedure is provided in Algorithm 1.

Algorithm 1 Instance-Dependent Label Noise Synthesis
Input: Clean dataset D = {(xn, yn)}Nn=1, xn ∈ Rdx ,
Noise rate η, Number of classes C
Output: Noisily labeled dataset D̃ =
{(xn, ỹn)}Nn=1

1: Sample C feature projection matrices {W1, ...,WC}
from a standard normal distribution N (0, 1), with each
Wc ∈ Rdx×C .

2: for n = 1, . . . , N do
3: Sample q ∈ R from a truncated normal distribution

N (η, 0.12) within the interval [0,1].
4: Compute probability vector by p = xnWyn

∈ RC .
5: Set the probability of the true class to be negative

infinity pyn
= −∞.

6: Adjust p = q × Softmax(p) and set pyn = 1− q.
7: Sample corrupted label ỹn from C classes according

to the modified probability distribution p.
8: end for

Clothing1M [17]. To assess DynaCor’s performance with
systematic type label noise, we use a real-world dataset
Clothing1M, which consists of clothing images across 14
classes1 collected from online shopping websites. It com-
prises one million images with inherent noisy labels in-
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1T-shirt, Shirt, Knitwear, Chiffon, Sweater, Hoodie, Windbreaker,

Jacket, Down Coat, Suit, Shawl, Dress, Vest, and Underwear

duced by automated annotations derived from keywords in
the text surrounding each image. It also provides 50K, 14K,
and 10K instances verified as clean for training, valida-
tion, and testing purposes. Adhering to the previous experi-
mental setup [6], for training, we utilize randomly sampled
120K instances from the 1M noisy dataset while ensuring
each class is balanced. To evaluate classification perfor-
mance, we use the 10K clean test set.

A.2. Reproducibility

For reproducibility, we provide detailed hyperparameters
for (1) classifiers used to generate training dynamics or to
learn robust models and (2) dynamics encoder to learn dis-
criminative representations of the training dynamics.

Classifier. Table 5 shows details of the datasets, models,
and training parameters used to generate training dynam-
ics or to learn robust models in each section of this paper.
Optimizer and momentum are fixed as SGD and 0.9, re-
spectively. In the case of CLIP with MLP, we obtain input
features using a fixed image encoder from CLIP and train
only MLP, which consists of two fully connected layers of
512 units with ReLUs [8]. Resnet50 is pre-trained on Ima-
geNet [2] and is fine-tuned on Clothing1M. We follow the
experimental setups described in the reference papers.

Dataset CIFAR-10/CIFAR-100 Clothing1M

Section 5.2 to 5.4 5.5 Appendix D

Model CLIP [12]
w/ MLP

Resnet34
[3, 15]

PreAct-
Resnet18 [4, 9]

Resnet50
[3, 6]

Learning rate 0.1 0.1 0.02 0.002
Weight decay 5× 10−4 5× 10−4 5× 10−4 0.001
LR scheduler Cosine Multi-step Multi-step Multi-step
Batch size 128 128 128 64
Epochs 30 100 300 10
α 0.5 0.05 0.05 0.5

Table 5. Detailed hyperparameters used in the experiments for the
classifiers.

Dynamics encoder. For the dynamics encoder in Dy-
naCor, we use a 1D Convolutional Neural Network (1D-
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CNN). It consists of three convolutional layers, each incor-
porating rectified linear units (ReLUs) [8], followed by a
linear layer with 512 output units. For optimization, we use
Adam [7] with a learning rate 1 × 10−5 and a weight de-
cay 5 × 10−4 without implementing a learning rate sched-
uler. The model is trained for 10 epochs with a batch size
of 1024.

B. Analyses of Training Dynamics

To assess the distinguishability of the inherent patterns
manifested in the training dynamics, we conduct a con-
trolled experiment using classification within a supervised
learning framework. This is predicated on the assumption
that ground-truth annotations are available, explicitly speci-
fying each instance as being correctly or incorrectly labeled.

We first provide preliminaries for analyses (Sec. B.1).
Then, we demonstrate the efficacy of capturing temporal
patterns in training dynamics versus summarizing these dy-
namics into a single scalar value (Sec. B.2) on various train-
ing signals. Lastly, we evaluate which training signals ex-
hibit more distinctive patterns (Sec. B.3).

B.1. Preliminaries

Training signals. Table 6 summarizes various training
signals introduced in the literature. Given an instance (x, y)
and a classifier f , let f(x) ∈ RC and fy(x) denote the
output logits of an instance x for C classes and its value
for class y, respectively. ℓ(·, ·) is a loss function, and
py(x) =

exp fy(x)∑C
c=1 exp fc(x)

is a predicted probability of class y.
vx indicates penultimate layer representation vectors of an
instance x, and uy is a representative vector for class y, de-
rived through performing eigen decomposition on the gram
matrix of data representations. ⟨·, ·⟩ denotes inner product.

Training signal Formula, tx

Loss [5] ℓ(f(x), y)
Probability [1] py(x)
Probability difference [13] maxc pc(x)− py(x)
Logit difference [11] fy(x)−maxc̸=y fc(x)
Alignment of pre-logits [6] ⟨uy, vx⟩2

Table 6. Various types of training signals.

Supervised experimental setting. As illustrated in Figure
4, we generate training dynamics by employing a classifier
that predicts the class probabilities for each input instance
across the set of classes. Subsequently, we construct a new
dataset comprising these extracted training dynamics and
the corresponding ground-truth labels that are assumed to
exist. This new dataset is then utilized to train a 1D con-
volutional neural network (1D-CNN) classifier (henceforth
referred to as a binary classifier) that distinguishes between

Figure 4. Dataset construction for supervised learning.

correctly and incorrectly labeled instances based on the pat-
terns in their training dynamics. We train the binary classi-
fier (whose encoder is the same as our dynamics encoder)
for 20 epochs using the Adadelta [18] optimizer with an ini-
tial learning rate of 1 and a StepLR scheduler that reduces
it by 1% for every epoch. The batch size is set to 128. Dur-
ing training, we monitor the model’s performance on a val-
idation set and report the F1 score for detecting incorrectly
labeled instances on the test set, corresponding to the point
where the validation F1 score achieves its maximum value.

B.2. Temporal patterns in training dynamics

To assess the effectiveness of capturing temporal patterns
within training dynamics compared to summarizing them
into a single scalar value [1, 11], we conduct experiments
using them as input to the binary classifier in the supervised
setting. For the training dynamics, we use

tx = [t(1)x , .., t(E)
x ], (1)

where t
(e)
x is a training signal at epoch e for an instance x,

and E is the maximum number of training epochs. For the
summarized one, we use a statistical method [1, 11] that
average the series of temporal signals into a single scalar
value sx to encapsulate the essential features.

sx =
1

E

E∑
e=1

t(e)x , (2)

To evaluate the relative efficacy of these approaches, we use
two distinct types of training signals: probability and logit
difference in Table 6. For the binary classifier of the sum-
marized one, we adopt a multi-layer perceptron (MLP) of
two hidden layers. To ensure the model’s sufficient capacity
to learn patterns in the data, we increase the model parame-
ters until performance does not improve further.
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Figure 5. Comparison of detection F1 score (%) achieved by
the binary classifiers trained using the training dynamics (comb-
pattern bar and star marker in legend) versus those trained with the
summarized one for various noise types on CIFAR-100. Prob. and
Logit diff. indicate the types of training signals in Table 6. Noise
rates of Sym., Asym., and Instance are 0.6, 0.4, and 0.3, respec-
tively. The human-induced noise has noise rates of 0.4. CLIP w/
MLP (Left) and Resnet34 (Right) are used for training dynamics
generation.

Figure 5 shows that the models trained with the train-
ing dynamics consistently outperform those with the sum-
marized training dynamics. The results demonstrate that
temporal patterns within training dynamics help distinguish
between correctly and incorrectly labeled instances.

B.3. Comparison of various training signals

We compare the detection F1 score of the binary classi-
fier trained with the training dynamics derived from various
training signals in the supervised setting.

Figure 6. Comparison of detection F1 score (%) of the raw train-
ing dynamics from various training signals on CIFAR-100. Noise
rates of Sym., Asym., and Instance are 0.6, 0.4, and 0.3, respec-
tively. The human-induced noise type has noise rates of 0.4. The
Avg. indicates an averaged F1 score (%) over all noise types. CLIP
w/ MLP (Upper) and Resnet34 (Lower) are used for training dy-
namics generation.

Figure 6 shows that, on average, more processed train-
ing signals, such as probability differences and alignment of
pre-logits, exhibit superior performance compared to sim-
pler ones. In this study, we select logit difference as the base

proxy measure due to its consistent performance across var-
ious experimental settings. Moreover, we observe that de-
tection performance for different types of noises is highly
correlated with model architecture. We leave the study of
the influence of model architectures in future work.

C. Proof of the Lower Bound of ηγ
Proposition 1 (Lower bound of ηγ) Let ηγ denote the
noise rate of the corrupted dataset. Given the diagonally
dominant condition, i,e., η < 1− 1

C , for any γ ∈ (0, 1], ηγ
has a lower bound of 1− 1

C .

Proof. The proportion of the correctly labeled instances
in the corrupted dataset can be derived by multiplying the
noise rate η of the original dataset by the probability that a
noisy label is subsequently restored to its clean label due to
the corrupting process, i.e., η( 1

C−1 ). This derivation holds
because the corruption process randomly flips class labels to
one of the other classes uniformly. Consequently, the noise
rate ηγ of the corrupted dataset is calculated as

ηγ = 1− η

(
1

C − 1

)
. (3)

Then, by the diagonally dominant condition, i.e., η < 1− 1
C ,

Eq. (3) implies

1− 1

C
< ηγ (4)

With this, we can derive that the corrupted dataset has a
higher noise rate than the original dataset, i.e., η < ηγ . Be-
sides, we present the formulation of the overall noise rate of
the original and corrupted datasets as

ηover =
η + γ · ηγ
1 + γ

. (5)

D. Compatibility analysis with robust learning
on Clothing 1M dataset

We also investigate the compatibility of DynaCor with vari-
ous loss functions (GCE [19], and SCE [14]) and regulariza-
tion technique (ELR [10]), specifically designed for noise
robust learning. To this end, we measure the test accuracy
of such noise robust classifiers trained using the original
Clothing1M dataset and the cleansed dataset (i.e., the one
with only correctly labeled instances identified by Dyna-
Cor), respectively.

In Table 7, we can observe consistent improvement in
classification performance by cleansing the original dataset
based on the detection results from DynaCor, even in case
the classifier is trained with a noise-robust loss function or
regularization technique.

3



Loss type GCE [19] SCE [14] ELR [10]

Original 71.82 71.75 72.57
Cleansed 72.23 72.37 73.06

Table 7. Classification accuracy (%) on Clothing1M, trained with
noise robust loss functions (GCE, SCE) and regularization tech-
nique (ELR) by using the original and cleansed sets, respectively.
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